Purification, antioxidant capacity and component analysis of hawthornleaf polyphenols

  • WU Yonghua ,
  • LIU Enqi ,
  • ZHANG Jianping ,
  • CHEN Shanglong ,
  • CHEN Anhui ,
  • SHAO Ying
Expand
  • (Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou 221008, China)

Received date: 2019-07-30

  Online published: 2020-03-13

Abstract

The purification process of hawthorn leaf polyphenols was investigated, and its antioxidant activity and constituents were analyzed. The adsorption properties of selected four macroporous resins (SP-825, D101, AB-8, XDA-2) for hawthorn leaf polyphenols were compared, the optimum purification resins were screened and the purification parameters were optimized. The antioxidant activity, composition and infrared spectroscopic characteristics of hawthorn leaf polyphenols were investigated. The results showed that AB-8 resin possessed the best effect on the purification of hawthorn leaf polyphenols. The optimum purification parameters were as follows, initial sample solution pH 4.5, sample concentration 0.064 mg/mL, sampling flow rate 1.5 mL/min, elution flow rate 0.6 mL/min with 70% ethanol. Under these conditions, the recovery rate was 78.25%, the purity of polyphenol was increased by 4.15 times after purification. The crude extract and purified substance of hawthorn leaf polyphenols showed good antioxidant activity, the IC50 values of DPPH· scavenging capacity were (1.28±0.14) μg/mL and (0.78±0.09) μg/mL respectively, the IC50 values of Fe2+ chelating capacity were (55.58±1.24) μg/mL and (34.13±1.02) μg/mL respectively, the IC50 values of total reduction power were (3.66±0.18) μg/mL and (2.12±0.23) μg/mL respectively, the IC50 values of purified hawthorn leaf polyphenols for ·OH scavenging capacity were (4.49±0.16) μg/mL, which indicated that the antioxidant capacity of the purified substance of hawthorn leaf polyphenols was significantly improved compared with the crude extracts. FTIR analysis showed that the purified hawthorn leaf polyphenols had characteristic peaks of polyphenols and flavonoids, HPLC analysis showed that the purified hawthorn leaf polyphenols mainly contained chlorogenic acid, epicatechin, ferulic acid, rutin and ursolic acid, which indicated that hawthorn leaf polyphenols have good utilization and development prospects.

Cite this article

WU Yonghua , LIU Enqi , ZHANG Jianping , CHEN Shanglong , CHEN Anhui , SHAO Ying . Purification, antioxidant capacity and component analysis of hawthornleaf polyphenols[J]. Food and Fermentation Industries, 2020 , 46(2) : 165 -172 . DOI: 10.13995/j.cnki.11-1802/ts.021842

References

[1] 国家药典委员会. 中华人民共和国药典[S]. 北京:化学工业出版社, 2005.
[2] 贾亚楠. 山楂叶中酚类成分的HPLC分析[D]. 保定: 河北农业大学, 2014.
[3] 弓威, 顾丰颖, 贺凡, 等. 山楂叶有效成分提取工艺优化及抗氧化活性研究[J]. 核农学报, 2015, 29(8):1 547-1 558.
[4] 王瑛, 孙广红, 张瑞芬, 等. 山楂叶提取物镇痛与抗炎作用实验研究[J]. 中医药学报, 2012, 40(1):38-39.
[5] ELANGO C, DEVARAJ N S. Immunomodulatory effect of Hawthorn extract in an experimental stroke model[J]. Journal of Neuroinflammation, 2010, 7:97.
[6] KOCH E, MALEK F. Standardized extracts from hawthorn leaves and flowers in the treatment of cardiovascular disorders-preclinical and clinical studies[J]. Planta Medica, 2011, 77(11):1 123-1 128.
[7] KWOK C Y, LI C, CHENG H L, et al. Cholesterol lowering and vascular protective effects of ethanolic extract of dried fruit of Crataegus pinnatifida, hawthorn (Shan Zha), in diet-induced hypercholesterolaemic rat model[J]. Journal of Functional Foods, 2013, 5(3):1 326-1 335.
[8] AIERKEN A, BUCHHOLZ T, CHEN C, et al. Hypoglycemic effect of hawthorn in type Ⅱ diabetes mellitus rat model[J]. Journal of the Science of Food and Agriculture, 2017, 97 (13):4 557-4 561.
[9] 陈安徽, 巫永华, 刘恩岐, 等. 山楂叶多酚的酶法提取及抗氧化活性研究[J]. 食品科技, 2017(2):203-208.
[10] 李斌, 高凝轩, 刘辉, 等. 大孔树脂纯化黑果腺肋花楸多酚的工艺优化[J]. 食品科学, 2016,37(16): 69-74.
[11] 杨希娟, 党斌, 张杰, 等. 黑青稞麸皮结合态酚类物质大孔树脂分离纯化工艺优化[J]. 农业工程学报, 2018, 34(21):295-303.
[12] 张卉,王亚茹,刘洋峰. XAD-7型大孔树脂纯化黑果腺肋花楸多酚条件优化[J]. 食品研究与开发, 2019,40(8):159-163.
[13] 马乐, 韩军岐, 白欢欢, 等. 采用大孔树脂分离纯化核桃青皮中多酚[J]. 食品与发酵工业, 2016, 42(3):237-242.
[14] XI L, MU T, SUN H. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins[J]. Food Chemistry, 2015, 172:166-174.
[15] GUO C, QIAO J, ZHANG S, et al. Purification of polyphenols from kiwi fruit peel extracts using macroporous resins and high-performance liquid chromatography analysis[J]. International Journal of Food Science & Technology, 2018,53(6): 1 486-1 493.
[16] WANG G L, BOVSSETTA N, LEBOVKA N, et al. Ultrasound assisted purification of polyphenols of apple skins by adsorption_desorption procedure[J]. Ultrasonics-Sonochemistry, 2019,55:18-24.
[17] 史斌斌. 铁核桃多酚类物质含量与抗氧化活性、代谢相关酶活性的关系[D]. 贵阳: 贵州大学, 2017.
[18] 旷慧. 红树莓多酚的提取、分离纯化、组分分析和抗氧化活性研究[D]. 哈尔滨: 东北林业大学, 2017.
[19] 周凯.龙眼核多酚的分离纯化及其对小鼠烫伤愈合的影响[D]. 广州: 华南农业大学, 2016.
[20] 李颖畅, 李冰心, 吕艳芳, 等. AB-8型大孔树脂纯化蓝莓叶多酚的工艺研究[J]. 食品工业科技, 2012, 33(20): 258-261.
[21] 周跃勇. 猕猴桃中多酚类物质的提取及纯化研究[D]. 郑州: 河南工业大学, 2007.
[22] 朱洁, 王红宝, 孔佳君, 等. 梨幼果多酚的纯化及其抗氧化性[J]. 食品科学, 2017,38 (5):14-20.
[23] 何婷. 大孔树脂纯化龙眼核多酚及其组分分析[J]. 食品工业科技, 2019,40(16):1-6;13.
[24] 仇洋. 黑果腺肋花楸多酚的提取纯化及活性研究[D]. 长春: 吉林大学, 2017.
[25] 武煜, 顾振纶. 茶多酚的药理学作用及其机制研究进展[J]. 中成药, 2005,27(6):722-725.
[26] 蒋孟君, 王艺, 任建青, 等. 超声提取食用玫瑰花总酚及其大孔树脂纯化前后抗氧化活性[J]. 食品工业科技, 2017,38(23):164-169.
[27] 石晓峰, 沈薇, 宁红霞, 等. 雪松松针总多酚的纯化工艺和抗氧化活性研究[J]. 天然产物研究与开发, 2016(8):1 325-1 331.
[28] 张玉洁. 番杏多酚的提取纯化及抗氧化活性研究[D]. 长春: 吉林大学, 2016.
[29] CHUPIN L, MOTILLON C, BOUHTOURY C E, et al. Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC[J]. Industrial Crops & Products, 2013, 49(7):897-903.
[30] 刘琪. 橡子果仁多酚成分及功能性研究[D]. 杨凌: 西北农林科技大学, 2018.
[31] 弓威. 山楂叶有效成分提取分离及利用研究[D]. 北京:中国农业科学院, 2015.
Outlines

/