Advances in detection of chloramphenicol residues with aptamers in animal-derived foods

  • WANG Xin ,
  • LIU Hebing ,
  • TAO Xiaoqi
Expand
  • 1. College of Food Science, Southwest University, Chongqing 400715, China;
    2. Beijing WDWK Biotech Co., Ltd, Beijing 10095, China;
    3. Chongqing Engineering Research Center of Regional Food, Chongqing 400715, China

Online published: 2019-11-06

Abstract

As one of the broad spectrum antibacterial antibiotics, the rapid detection of chloramphenicol(CAP) is crucial because it was banned from food animals. Aptamer is a novel biological recognized element with good stability and facile synthesis. Developing sensitive, accurate and rapid detection of CAP with aptamers becomes a new breakthrough and has good development prospects compared with traditional antibody detection. Therefore, the main methods in CAP residues detection with aptamers have been reviewed in recent five years, including colorimetric, fluorescence, chemiluminescence, surface-enhanced Raman scattering and electrochemical biosensor. However, lack of systematic in-depth research, related detection applications are difficult to take into account both rapid and accurate detection requirements. It is hereby to compare different analytical methods and, moreover, analyze the advantages, disadvantages and development trends, which provides a useful reference for the efficient regulation of CAP residues in animal-derived foods.

Cite this article

WANG Xin , LIU Hebing , TAO Xiaoqi . Advances in detection of chloramphenicol residues with aptamers in animal-derived foods[J]. Food and Fermentation Industries, 2019 , 45(18) : 254 -262 . DOI: 10.13995/j.cnki.11-1802/ts.020946

References

[1] EFFIONG G S, EBONG P E, EYONG E U, et al. Amelioration of chloramphenicol induced toxicity in rats by coconut water[J]. Journal of Applied Sciences Research, 2010,6(4):331-335.
[2] DUAN Y, WANG L, GAO Z, et al. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR[J]. Talanta, 2017, 165:671-676.
[3] 陶晓奇. 动物性食品中酰胺醇类残留化学发光检测技术研究[D]. 北京:中国农业大学, 2014.
[4] 中华人民共和国农业部. 农业部第235 号公告 动物性食品中兽药最高残留限量[S]. 北京:中国标准出版社,2002.
[5] 符靖雯, 黄子敬,陈孟君,等. 气相色谱-电子捕获检测器快速测定水产品中多种农药及兽药残留[J]. 理化检验(化学分册), 2018, 54(9):29-33.
[6] 肖婉娜, 何敏,陈怡佳. 高效液相色谱法检测蜂蜜中的氯霉素[J]. 农产品加工, 2018(6):56-58.
[7] LIU T, XIE J, ZHAO J, et al. Magnetic chitosan nanocomposite used as cleanup material to detect chloramphenicol in milk by GC-MS[J]. Food Analytical Methods, 2014, 7(4):814-819.
[8] 张燕, 徐幸,舒平, 等. 高效液相色谱-质谱联用法测定乳及乳制品中氯霉素类药物残留量[J]. 食品安全质量检测学报, 2015,6(2):710-717.
[9] 王安伟, 刘天密,覃锐, 等. 水产品中氯霉素残留检测方法研究进展[J]. 食品安全质量检测学报, 2017,8(11):179-184.
[10] SARWER UG, RONY M M H,SHARMIN M S S, et.al. ELISA validation and determination of cut-off level for chloramphenicol (CAP) residues in shrimp and fish[J]. Our Nature,2017,15(1-2):13-18.
[11] TAO X, JIANG H, ZHU J, et al. Detection of ultratrace chloramphenicol residues in milk and chicken muscle samples using a chemiluminescent ELISA[J]. Analytical Letters, 2012, 45(10):1 254-1 263.
[12] 吴丽媛. 动物源性食品氯霉素类残留检测方法概述[J]. 中国畜禽种业, 2014, 10(4):43-44.
[13] ZHANG Z, LIU J F, YAO Y, et al. A competitive dual-label time-resolved fluoroimmunoassay for the simultaneous determination of chloramphenicol and ractopamine in swine tissue[J]. Chinese Science Bulletin, 2011, 56(15): 1 543-1 547.
[14] 刘文珍, 王振国,田飞焱, 等. 胶体金免疫层析法快速检测水产品中氯霉素的应用与验证[J]. 江西水产科技, 2016(5):23-27.
[15] 段烨. 氯霉素核酸适体的筛选及基于核酸适体生物传感器的建立[D]. 北京:北京化工大学, 2016.
[16] DUAN Y, GAO Z, WANG L, et al. Selection and identification of chloramphenicol-specific DNA aptamers by Mag-SELEX[J]. Applied Biochemistry and Biotechnology, 2016, 180(8):1 644-1 656.
[17] OHON Y, MAEHASHI K, MARSUMOTO K. Label-free biosensors based on aptamer-modified graphene field-effect transistors[J]. Journal of the American Chemical Society, 2010, 132(51): 18 012-18 013.
[18] ZHANG S, MA L, MA K, et al. Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide[J]. ACS omega, 2018, 3(10): 12 886-12 892.
[19] GAO H, GAN N, PAN D, et al. A sensitive colorimetric aptasensor for chloramphenicol detection in fish and pork based on the amplification of a nano-peroxidase-polymer[J]. Analytical Methods, 2015, 7(16): 6 528-6 536.
[20] LU Z, CHEN X, HU W. A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection[J]. Sensors and Actuators B: Chemical, 2017, 246: 61-67.
[21] KIM S, LEE H J.Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay[J]. Analytical chemistry, 2017, 89(12): 6 624-6 630.
[22] JAYASENA S D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics[J]. Clin Chem,1999, 45(9):1 628-1 650.
[23] SONG S, WANG L, LI J, et al. Aptamer-based biosensors[J]. TrAC Trends in Analytical Chemistry, 2008, 27(2):108-117.
[24] HERMANN T. Adaptive recognition by nucleic acid aptamers[J]. Science, 2000, 287(5 454):820-825.
[25] MONTAZER M, PARVNZADEH M, KIUMARSI A. Colorimetric properties of wool dyed with natural dyes after treatment with ammonia[J]. Coloration Technology, 2006, 120(4):161-166.
[26] YE BF, ZHAO Y J, CHENG Y, et al. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions[J]. Nanoscale, 2012, 4(19):5 998-6 003.
[27] XIE Y, HUANG Y, TANG D, et al. A competitive colorimetric chloramphenicol assay based on the non-cross-linking deaggregation of gold nanoparticles coated with a polyadenine-modified aptamer[J]. Microchimica Acta, 2018, 185(12):534.
[28] YAN C, ZHANG J, YAO L, et al. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food[J]. Food Chemistry, 2018,260: 208-212.
[29] HUANG W, ZHANG H, LAI G, et al. Sensitive and rapid aptasensing of chloramphenicol by colorimetric signal transduction with a DNAzyme-functionalized gold nanoprobe. [J] Food Chemistry, 2019, 270:287-292.
[30] ZHANG X, HUANG P J J, SERVOS M R, et al. Effects of polyethylene glycol on DNA adsorption andHybridization on gold nanoparticles and graphene oxide[J]. Langmuir, 2012, 28(40):14 330-14 337.
[31] JAVIDI M, HOUSAINDOKHT, MR, et al. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples[J]. Analytical Chimica Acta, 2018, 1039:116-123.
[32] ROSSINI E L, MILANI M I, PEZZA H R. Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform[J]. Talanta, 2019, 201: 503-510.
[33] 谷巧荣. 荧光分析法检测磷脂酶C及DnaseⅠ活性的研究[D].西安:陕西师范大学,2017.
[34] LEE J B, KURODA S, SHICHINOHE H, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice[J]. Neuropathology, 2003, 23(3): 169-180.
[35] ALIBOLANDI M, HADIZADEH F, VAJHEDIN F, et al. Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet[J]. Materials Science and Engineering: C, 2015, 48:611-619.
[36] MIAO Y, GAN N, LI T, et al. An ultrasensitive fluorescence aptasensor for chloramphenicol based on FRET between quantum dots as donor and the magnetic SiO2@ Au NPs probe as acceptor with exonuclease-assisted target recycling[J]. Sensors and Actuators B: Chemical, 2016, 222: 1 066-1 072.
[37] MIAO Y,REN H X,GAN N, et al. A homogeneous and “off-on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes[J]. Analytica Chimica Acta, 2016,929:49-55.
[38] WU S, ZHANG H, SHI Z, et al. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles[J]. Food Control, 2015, 50:597-604.
[39] HAO L DUAN N, WU S, et al. Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles[J]. Analytical and Bioanalytical Chemistry, 2015, 407(26):7 907-7 915.
[40] 于秀霞. 化学发光功能化纳米材料在新型生物传感器中的应用[D]. 合肥:中国科学技术大学,2014.
[41] YAN W, YANG L, ZHUANG H, et al. Engineered “hot” core-shell nanostructures for patterned detection of chloramphenicol[J]. Biosensors & Bioelectronics, 2015,78:67-72.
[42] YANG K, HU Y, DONG N. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol[J]. Biosensors and Bioelectronics, 2016, 80: 373-377.
[43] CHEN M, GAN N,ZHOU Y, et al. A novel aptamer- metal ions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification[J]. Sensors and Actuators, B: Chemical, 2017, 242:1 201-1 209.
[44] FENG X, GAN N, ZHANG H, et al. A novel “dual-potential” electrochemiluminescence aptasensor array using CdS quantum dots and luminol-gold nanoparticles as labels for simultaneous detection of malachite green and chloramphenicol[J]. Biosensors and Bioelectronics, 2015, 74:587-593.
[45] ZHOU L, GAN N, ZHOU Y, et al. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes[J]. Talanta, 2017, 167(Complete):544-549.
[46] ZHOU L, GAN N, HU F, et al. Microchip electrophoresis array-based aptasensor for multiplex antibiotic detection using functionalized magnetic beads and polymerase chain reaction amplification[J]. Sensors and Actuators B: Chemical, 2018,263:568-574.
[47] 赵帅. 基于核酸适配体的侧流层析试纸条法快速检测氯霉素残留[D]. 北京:北京化工大学,2018.
[48] BERLINA A N, NADEZHDA A, TERANOVA N A,et al. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk[J]. Analytical and Bioanalytical Chemistry, 2013, 405(14): 4 997-5 000.
[49] SUN Y, LU J. Chemiluminescence-based aptasensors for various target analytes[J]. Luminescence, 2018,33(18):1 298-1 305.
[50] MEHLHORN A, RAHIMI P,JOSEPH Y. Aptamer-based biosensors for antibiotic detection: A review[J]. Biosensors, 2018, 8(2):54-62.
Outlines

/