The near-infrared discrimination model of apple varieties (Gala, Jonagold, Golden Delicious, Hanfu) and shelf life (0, 14, 28 d), which are using the near-infrared spectroscopy technology by means of different spectral pre-processing methods and different spectral bands selections were studied. The results showed that the optimal spectral pre-processing methods for different apple varieties was determined to be within the full wavelength range (408.8 to 4922.8 nm), derivative spectral pretreatment, the positive rate for unknown samples was 85.00% to 95.00%. Apple's shelf life optimal calibration model was in the range of 1108 to 2492.8 nm, and the spectral pretreatment method was standard normal variate(SNV)+ detrend (D)+ first derivative to predict the accuracy of the sample. The accuracy of the sample was from 91.37% to 96.67%. The results demonstrated that near-infrared spectroscopy has applicability to postharvest apple varieties and shelf life testing.
ZHANG Peng
,
CHEN Shuaishuai
,
LI Jiangkuo
,
LI Boqiang
,
XU Yong
. Near-infrared spectroscopy for qualitative identification of postharvest apple varieties and shelf life[J]. Food and Fermentation Industries, 2019
, 45(19)
: 200
-205
.
DOI: 10.13995/j.cnki.11-1802/ts.018238
[1] 刘军弟,霍学喜,韩明玉,等. 中国苹果产业发展现状及趋势分析[J].北方园艺,2012(20): 164-168.
[2] 潘晓倩,申琳,生吉萍.苹果采后软化过程中糖类物质代谢的研究进展[J].中国食物与营养, 2011,17(11): 29-32.
[3] XU H, QI B, SUN T, et al.Variable selection in visible and near-infrared spectra: Application to on-line determination of sugar content in pears[J].Journal of Food Engineering,2012,109(1): 142-147.
[4] WANG J,NAKANO K,OHASHI S.Nondestructive evaluation of jujube quality by visible and near-infrared spectroscopy[J].LWT-Food Science and Technology,2011,44(4): 1 119-1 125.
[5] MOGHIMI A,AGHKHANI M H,SAZGARNIA A,et al.Improvement of nir transmission mode for internal quality assessment of fruit using different orientations[J]. Journal of Food Process Engineering,2011,34(5):1 759-1 774.
[6] 刘小路,薛璐,鲁晓翔,等.蓝莓可溶性固形物、总酸近红外无损检测模型的建立[J].食品与生物技术学报,2016,35(7):752-756.
[7] 夏俊芳,李培武,李小昱,等.不同预处理对近红外光谱检测脐橙VC含量的影响[J].农业机械学报,2007,38(6):107-111.
[8] 李光辉,任亚梅,任小林,等.苹果品种及损伤苹果的FT-NIR 鉴别研究[J].食品科学,2012,33(16):251-256.
[9] 何勇,李晓丽, 邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析,2006,26(5):850-853.
[10] 赵杰文,呼怀平,邹小波.支持向量机在苹果分类的近红外光谱模型中的应用[J].农业工程学报,2007,23(4):149-152.
[11] LUO W Q,HUAN S Y,FU H Y,et al.Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples[J].Food Chemisty,2011,128(2):555-561.
[12] XING J,BRAVO C,MOSHOU D,et al.Bruise detection on golden delicious apples by Vis/NIR spectroscopy[J].Computers and Electronics in Agriculture,2006,52(1-2):11-20.
[13] 刘辉军,孙斌,陈华才.基于近红外光谱的不同产地苹果货架期鉴别方法[J].光电工程,2011,38(5):86-91.
[14] 王加华,孙旭东,潘璐,等.基于可见/近红外能量光谱的苹果褐腐病和水心鉴别[J].光谱学与光谱分析,2008,28(9):2 098-2 102.
[15] 李顺峰,张丽华,刘兴华,等.基于主成分分析的苹果霉心病近红外漫反射光谱判别[J].农业机械学报,2011,42(10):158-161.
[16] 韩东海,刘新鑫,鲁超,等.苹果内部褐变的光学无损伤检测研究[J].农业机械学报,2006,37(6):86-88;93.
[17] 马本学,饶秀勤,应义斌,等.基于近红外漫反射光谱的香梨类别定性分析[J].光谱学与光谱分析, 2009, 29(12): 3 288-3 290.
[18] PEREZ-MARIN D,SANCHEZ M T,PAZ P, et al.Postharvest shelf life discrimination of nectarines produced under different irrigation strategies using NiR-spectroscopy[J].LWT-Food Science and Technology,2011,44(6):1 405-1 414.
[19] 罗枫,鲁晓翔,张鹏,等.近红外光谱对贮藏期樱桃品质的定性判别[J].食品与发酵工业,2015,41(4):197-201.
[20] 严衍禄,赵龙莲,李军会,等.现代近红外光谱分析的信息处理技术[J].光谱学与光谱分析,2000,20(6):777-780.
[21] 王丹,鲁晓翔,张鹏,等.近红外光谱检测不同贮藏期磨盘柿的内部品质[J].光谱实验室, 2013, 30(6):2 769-2 774.
[22] 杨艳芬. 大樱桃采后生理与贮藏保鲜技术研究进展[J].北方园艺,2009 (11):122-124.
[23] LIM J, MO C, NOH S H, et al. Capsaicinoids content pre-diction model development for Korean red-pepper powder using a visible and near-infrared spectroscopy[J]. Proceedings of SPIE-The International Society for Optics and Photonics,2012,8 369(3):28.
[24] 严衍禄. 近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.