Overview and special review

Structural and physicochemical properties of modified starch by dynamic high pressure microfluidization: A review

  • YOU Qingxiang ,
  • ZENG Hongliang ,
  • CHEN Peilin ,
  • LIN Yan ,
  • ZHENG Baodong ,
  • ZHANG Yi
Expand
  • 1(College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
    2(Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou 350002, China)
    3(China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, China)

Revised date: 2019-06-25

  Online published: 2019-11-15

Abstract

Dynamic high-pressure microfluidization, as an effective physical modification method for food macromolecules, can significantly change the size of starch granules, improve solubility, digestibility, and reduce crystallinity, gelatinization and viscosity. The effects of dynamic high-pressure microfluidization on starch structure, physicochemical and digestive properties were reviewed. Since most of the current researches focus on the effects of dynamic high-pressure microfluidization on the apparent properties and physicochemical properties of starch, few of them analyze the correlation between starch structural properties and physicochemical properties. This paper summarized the potential correlation between the structural properties and physicochemical properties of starch during dynamic high-pressure microfluidic technology treatment. It was found that the solubility of starch was related to the particle size, and the gelatinization temperature was related to the length of the molecular chain. It is concluded that the dynamic high-pressure microfluidization is a new method superior to the traditional starch modification technology, which can provide new ideas for the directional preparation and application of starch with specific structure. Finally, aiming at the shortcomings of the existing researches, the future research direction of dynamic high-pressure microfluidization modified starch is prospected, in order to provide a theoretical basis for the development of starch products.

Cite this article

YOU Qingxiang , ZENG Hongliang , CHEN Peilin , LIN Yan , ZHENG Baodong , ZHANG Yi . Structural and physicochemical properties of modified starch by dynamic high pressure microfluidization: A review[J]. Food and Fermentation Industries, 2019 , 45(19) : 307 -315 . DOI: 10.13995/j.cnki.11-1802/ts.021156

References

[1] PA M C, PC F S, LA B P.Starch structure influences its digestibility:a review[J].Journal of Food Science,2017,82(9):2 016-2 023.
[2] 李贵萧. 高压均质对淀粉结构、性质影响及其机械力化学效应研究[D].泰安:山东农业大学,2017.
[3] 陈军,戴涛涛,刘成梅,等. 动态高压微射流在食品大分子改性方面的应用[J].中国农业科技导报,2015,17(5):106-113.
[4] 陈秉彦. 莲子淀粉微波效应的研究[D].福州:福建农林大学,2015.
[5] 陈秉彦,郭泽镔,许丽宾,等. 微波处理对莲子淀粉理化性质的影响[J].现代食品科技, 2015, 31(3): 213-219.
[6] 闫巧珍,高瑞雄,侯传丽,等. 超声波处理对马铃薯全粉理化性质和消化特性的影响[J].中国粮油学报, 2017,32(8):105-110.
[7] HOOVER R.The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources[J].Critical Reviews in Food Science and Nutrition,2010,50(9):835-847.
[8] XING J J, LIU Y, LI D, et al.Heat-moisture treatment and acid hydrolysis of corn starch in different sequences[J].LWT-Food Science and Technology,2017,79:11-20.
[9] 帅希祥. 动态高压微射流诱导果胶降解的研究[D].南昌:南昌大学,2014.
[10] 阮传英. 动态高压微射流技术对豆渣膳食纤维吸附重金属能力的影响[D].南昌:南昌大学,2014.
[11] 李亚楠,刘红芝,刘丽,等. 动态高压微射流处理过程对多糖结构与理化性质的影响研究进展[J].食品科学,2015,36(7):211-215.
[12] KASEMWONG K, SRINUANCHAI W, ITTHISOPONKUL T, et al.Effect of high-pressure microfluidization on the structure of cassava starch granule[J].Starch-Stärke,2015,63(3):160-170.
[13] 陈秉彦. 莲子淀粉-单甘酯复合物特性及结构研究[D].福州:福建农林大学, 2018.
[14] GUO Z B, JIA X Z, ZHAO B B, et al. C-type starches and their derivatives: structure and function[J].Annals of the New York Academy of Sciences,2017,1 398(1):47-61.
[15] WANG S Q, WANG L L, FAN W H, et al.Morphological analysis of common edible starch granules by scanning electron microscopy[J].Food Science,2011,32(15):74-79.
[16] 尹月斌. 动态高压微射流技术对直链淀粉性质和结构的影响[D].南昌:南昌大学,2013.
[17] CHEN B, ZENG S, ZENG H, et al.Properties of lotus seed starch - glycerin monostearin complexes formed by high pressure homogenization[J]. Food Chemistry, 2017,226:119-127.
[18] 涂宗财,余莉,尹月斌,等. 动态高压微射流对马铃薯直链淀粉性质和结构的影响[J].食品与发酵工业, 2014,40(3):46-51.
[19] 李贵萧,牛凯,侯汉学,等. 高压均质对玉米淀粉机械力化学效应研究[J].中国粮油学报,2017,32(9):62-68.
[20] 李贵萧,牛凯,侯汉学,等. 高压均质对绿豆淀粉机械力化学效应的影响[J].食品与发酵工业,2017,43(5):99-105.
[21] TU Z C, YIN Y B, WANG H, et al.Effect of dynamic high-pressure microfluidization on the morphology characteristics and physicochemical properties of maize amylose[J].Starch-Stärke,2013,65(5-6):390-397.
[22] 王立东,肖志刚. 气流粉碎对玉米淀粉结构及理化性质的影响[J]. 农业工程学报,2016,32(24):276-281.
[23] 郭泽镔. 超高压处理对莲子淀粉结构及理化特性影响的研究[D].福州:福建农林大学,2014.
[24] 牛凯,代养勇,董海洲,等. 碾轧对马铃薯淀粉的机械力化学效应[J].食品科学,2017,38(19):18-23.
[25] 顾正彪,李兆丰,洪雁,等. 大米淀粉的结构、组成与应用[J].中国粮油学报,2004,19(2):21-27.
[26] 荆晓燕,杨留枝,刘延奇. 天然淀粉的超高压糊化压力研究[J].郑州:轻工学报(自然科学版),2012,27(4):40-43.
[27] TRAN T T B, SHELAT K J, TANG D. Milling of rice grains. the degradation on three structural levels of starch in rice flour can be independently controlled during grinding[J].Journal of Agricultural & Food Chemistry,2011,59(8):3 964-3 973.
[28] 朱秀梅. 大米直链淀粉在动态超高压微射流均质中的机械力化学效应研究[D].南昌:南昌大学,2010.
[29] WEI B X, CAI C X, XU B G, et al.Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process[J].Food Chemistry,2018,240:165-173.
[30] 陈佩. 不同链/支比玉米淀粉的形态及其在有/无剪切力下糊化的研究[D].广州:华南理工大学,2010.
[31] SZWENGIEL A, LEWANDOWICZ G, GRECKI A R, et al.The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content[J].Food Chemistry,2017,240:51-58.
[32] 杜晓冉. 甘薯淀粉回生过程中直链与支链淀粉相互作用研究[D].天津:天津大学, 2017.
[33] 付宗强. 颗粒内残余晶体结构对玉米淀粉特性的影响研究[D].北京:中国农业大学,2014.
[34] HUANG J, WEI N, LI H, et al.Outer shell, inner blocklets, and granule architecture of potato starch[J]. Carbohydrate Polymers, 2014, 103: 355-358.
[35] WANG S, LI C, COPELAND L, et al.Starch retrogradation: A comprehensive review[J]. Comprehensive Reviews in Food Science & Food Safety, 2015, 14(5): 568-585.
[36] TANG H, MITSUNAGA T, KAWAMURA Y.Molecular arrangement in blocklets and starch granule architecture[J]. Carbohydrate Polymers, 2006, 63(4): 555-560.
[37] IBEN D, SØREN BALLING E, ANDREAS B, et al. First principles insight into the alpha-glucan structures of starch: their synthesis, conformation, and hydration[J]. Chemical Reviews, 2010, 110(4): 2 049-2 080.
[38] 谢宇,张宏伟. 高压微射流对木薯淀粉性质结构的影响[J].造纸科学与技术,2013,6:72-75.
[39] 郭洪梅. 超微粉碎处理对杂粮(豆)淀粉结构及理化特性的影响[D].咸阳:西北农林科技大学,2016.
[40] 任维. 超高压微射流对淀粉改性的研究[D].南昌:南昌大学,2007.
[41] 涂宗财,黄小琴,刘成梅,等. 动态超高压微射流对蜡质大米淀粉理化性质的影响[J].食品工业科技,2009,9:65-66.
[42] LI W H, GAO J M, WU G, et al.Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: effects of lipids removal[J].Food Hydrocolloids,2016,60:364-373.
[43] CHE L M, WANG L J, DONG L, et al.Starch pastes thinning during high-pressure homogenization[J].Carbohydrate Polymers,2009,75(1):32-38.
[44] LI W H, ZHANG F S, LIU P L, et al.Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch[J]. Journal of Food Engineering,2011,103(4):388-393.
[45] CARRILLO-NAVAS H, AVILA-DE I R G, GÓMEZ-LURíA D, et al. Impact of ghosts on the viscoelastic response of gelatinized corn starch dispersions subjected to small strain deformations[J]. Carbohydrate Polymers,2014,110(38):156-162.
[46] 张博. 动态超高压微射流技术对蜡质淀粉改性的影响及其机理初探[D].南昌:南昌大学,2008.
[47] OH I K, BAE I Y, LEE H G.Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch[J].International Journal of Biological Macromolecules,2018,108(1):568-575.
[48] ZHOU Z K, REN X C, WANG F, et al.High pressure processing manipulated buckwheat antioxidant activity, anti-adipogenic properties and starch digestibility[J].Journal of Cereal Science,2015,66:31-36.
[49] 王曦,潘见. 超高压处理对发芽糙米饭淀粉体外消化特性的影响[J].安徽农业科学,2017,45(13):96-98.
[50] DENG Y, JIN Y F, LUO Y L, et al.Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules[J].Journal of Cereal Science,2014,60(2):302-310.
[51] HU X P, ZHANG B, JIN Z Y, et al.Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch[J].Food Chemistry,2017,232:560-565.
[52] TIAN Y Q, LI D D, ZHAO J W, et al.Effect of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches[J].Food Chemistry,2014,152(2):225-229.
[53] 莫紫梅. 糯米淀粉分子结构及其物化性质的研究[D].武汉:华中农业大学,2010.
[54] JI Y, WONG K, HASJIM J, et al.Structure and function of starch from advanced generations of new corn lines[J].Carbohydrate Polymers,2003,54(3):305-319.
[55] LIN J X, JIAN K X, XIANG L K, et al.Analysis of genotypic and environmental effects on rice starch. 2. Thermal and retrogradation properties[J].Journal of Agricultural & Food Chemistry,2004,52(19):6 017-6 022.
[56] WICKRAMASINGHE H A M, MIURA H, YAMAUCHI H, et al. Comparison of the starch properties of Japanese wheat varieties with those of popular commercial wheat classes from the USA, Canada and Australia[J].Food Chemistry,2005,93(1):9-15.
[57] 陆大雷. 糯玉米淀粉理化特性基因型差异及其调控效应研究[D].扬州:扬州大学,2009.
Outlines

/