[1] HEMSWORTH G R,JOHNSTON E M,DAVIES G J,et al. Lytic Polysaccharide Monooxygenases in Biomass Conversion[J]. Trends Biotechnol, 2015, 33(12): 747-761.
[2] LIU Z L. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates[J]. Appl Microbiol Biotechnol, 2011, 90(3): 809-825.
[3] GRONENBERG L S,MARCHESCHI R J,LIAO J C. Next generation biofuel engineering in prokaryotes[J]. Curr Opin Chem Biol, 2013, 17(3): 462-471.
[4] PERCIVAL ZHANG Y H,HIMMEL M E,MIELENZ J R. Outlook for cellulase improvement: screening and selection strategies[J]. Biotechnol Adv, 2006, 24(5): 452-481.
[5] VIIKARI L,ALAPURANEN M,PURANEN T,et al. Thermostable Enzymes in Lignocellulose Hydrolysis[J]. Advances in Biochemical Engineering/biotechnology, 2007, 108(108): 121.
[6] MERINO S T,CHERRY J. Progress and challenges in enzyme development for biomass utilization[J]. Adv Biochem Eng Biotechnol, 2007, 108: 95-120.
[7] KUMAR R,SINGH S,SINGH O V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives[J]. J Ind Microbiol Biotechnol, 2008, 35(5): 377-391.
[8] JARVIS M. Chemistry - Cellulose stacks up[J]. Nature, 2003, 426(6 967): 611-612.
[9] VAAJE-KOLSTAD G,WESTERENG B,HORN S J,et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides[J]. Science, 2010, 330(6 001): 219-222.
[10] HARRIS P V,WELNER D,MCFARLAND K C,et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family[J]. Biochemistry, 2010, 49(15): 3 305-3 316.
[11] LI X,BEESON W T T,PHILLIPS C M,et al. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases[J]. Structure, 2012, 20(6): 1 051-1 061.
[12] FORSBERG Z,VAAJE-KOLSTAD G,WESTERENG B,et al. Cleavage of cellulose by a CBM33 protein[J]. Protein Sci, 2011, 20(9): 1 479-1 483.
[13] HORN S J,VAAJE-KOLSTAD G,WESTERENG B,et al. Novel enzymes for the degradation of cellulose[J]. Biotechnology for Biofuels, 2012, 5(1): 45.
[14] ANTHONY LEVASSEUR E D, VINCENT LOMBARD, PEDRO M COUTINHO, BERNARD HENRISSAT. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes[J]. Biotechnology for Biofuels, 2013, 6: 41.
[15] HEMSWORTH G R,HENRISSAT B,DAVIES G J,et al. Discovery and characterization of a new family of lytic polysaccharide monooxygenases[J]. Nature Chemical Biology, 2013, 10(2): 122-126.
[16] LO L L,SIMMONS T J,POULSEN J C,et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase[J]. Nat Commun, 2015, 6: 5 961.
[17] VOSHOL G P,VIJGENBOOM E,PUNT P J. The discovery of novel LPMO families with a new Hidden Markov model[J]. BMC Res Notes, 2017, 10(1): 105.
[18] SABBADIN F,HEMSWORTH G R,CIANO L,et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion[J]. Nat Commun, 2018, 9(1): 756.
[19] FILIATRAULT-CHASTEL C,NAVARRO D,HAON M,et al. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes[J]. Biotechnology for Biofuels, 2019, 12: 55.
[20] MONCLARO A V,FILHO E X F. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown[J]. Int J Biol Macromol, 2017, 102: 771-778.
[21] FROMMHAGEN M,SFORZA S,WESTPHAL A H,et al. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase[J]. Biotechnol Biofuels, 2015, 8(1): 101.
[22] VOGEL J. Unique aspects of the grass cell wall[J]. Curr Opin Plant Biol, 2008, 11(3): 301-307.
[23] TERPE K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 211-222.
[24] CHEN R. Bacterial expression systems for recombinant protein production: E. coli and beyond[J]. Biotechnology Advances, 2012, 30(5): 1 102-1 107.
[25] BANEYX F,MUJACIC M. Recombinant protein folding and misfolding in Escherichia coli[J]. Nat Biotechnol, 2004, 22(11): 1 399-1 408.
[26] CHOI J H,LEE S Y. Secretory and extracellular production of recombinant proteins using Escherichia coli[J]. Applied Microbiology and Biotechnology, 2004, 64(5): 625-635.
[27] VENTURA S,VILLAVERDE A. Protein quality in bacterial inclusion bodies[J]. Trends in Biotechnology, 2006, 24(4): 179-185.
[28] LOW K O,MUHAMMAD MAHADI N,MD ILLIAS R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts[J]. Appl Microbiol Biotechnol, 2013, 97(9): 3 811-3 826.
[29] ZHANG H,ZHAO Y,CAO H,et al. Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis[J]. Int J Biol Macromol, 2015, 79: 72-75.
[30] YANG Y,LI J,LIU X,et al. Improving extracellular production of Serratia marcescens lytic polysaccharide monooxygenase CBP21 and Aeromonas veronii B565 chitinase Chi92 in Escherichia coli and their synergism[J]. AMB Express, 2017, 7(1): 170.
[31] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5 259): 680-685.
[32] BRESLMAYR E,HANZEK M,HANRAHAN A,et al. A fast and sensitive activity assay for lytic polysaccharide monooxygenase[J]. Biotechnol. Biofuels, 2018, 11: 79.
[33] PETERSEN T N,BRUNAK S,VON HEIJNE G,et al. SignalP 4.0: discriminating signal peptides from transmembrane regions[J]. Nat Methods, 2011, 8(10): 785-786.
[34] MAKRIDES S C. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiol Rev, 1996, 60(3): 512-538.
[35] DVORAK P,CHRAST L,NIKEL P I,et al. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway[J]. Microb Cell Fact, 2015, 14: 201.
[36] GLICK B R. Metabolic load and heterologous gene expression[J]. Biotechnology Advances, 1995, 13(2): 247-261.
[37] CHHETRI G,KALITA P,TRIPATHI T. An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli[J]. MethodsX, 2015, 2: 385-391.