Study on processing technology of high-calcium walnut milk withMoringa oleifera leave

  • 周艳 ,
  • 赵存朝 ,
  • 史崇颖 ,
  • 陶亮田洋
Expand
  • 1 (College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China)
    2 (National Research Center for Moringa Processing Technology, Kunming 650201, China)
    3 (Yunnan Key Laboratory of Biological Big Data Institute, Kunming 650201, China)

Received date: 2019-05-24

  Online published: 2019-11-15

Abstract

To develop a walnut milk beverage enriched with organic calcium, peeled walnut and Moringa oleifera leaf were fermented to extract organic calcium, and on the basis of single factor experiment, the processing technology was optimized by response surface methodology. The optimal technological process was peeling, soaking, beating with solid-liquid ratio of 1∶1 (1min for 1 kg walnut colloid mill), milling with solid-liquid ratio of 1∶3 (grinding wheel), filtering (200 mesh), blending (Moringa oleifera calcium powder of 40 g/kg, sucrose of 42 g/kg, vanillin of 0.15 g/kg, pH 7.6-7.8), preheating (50-60 ℃), homogenizing (primary homogenization of 20-25 MPa, secondary homogenization of 35-40 MPa), vacuum degassing, filling and sterilization (121 ℃, 15 min). Besides, the optimum addition of glycerol monostearate and sucrose fatty acid ester mixture (mass ratio of 7∶3) was 0.1% (volume fraction), and the addition of pectin and sodium alginate mixture (mass ratio of 4∶6) was 0.15% (volume fraction). The high-calcium walnut milk had unique flavor and high stability, with organic calcium content over 120 g/100 mL. The study provides a technical support for the development of new walnut products.

Cite this article

周艳 , 赵存朝 , 史崇颖 , 陶亮田洋 . Study on processing technology of high-calcium walnut milk withMoringa oleifera leave[J]. Food and Fermentation Industries, 2019 , 45(21) : 173 -179 . DOI: 10.13995/j.cnki.11-1802/ts.021188

References

[1] SZETAO K W C, SATHE S K. Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility[J]. Journal of the Science of Food & Agriculture, 2000, 80(9):1 393-1 401.
[2] LI J,WANG J,LIU C L,et al. Protein hydrolyzates from Changbai Mountain Walnut (Maxim.) boost mouse immune system and exhibit immunoregulatory activities[J].Evid Based Complement Alternat Med, 2018, 2018: 4 576 561.
[3] 张亭, 杜倩,李勇. 核桃的营养成分及其保健功能研究进展[J].中国食物与营养, 2018, 24(7):64-69.
[4] ALBERT C M, GAZIANO J M, WILLETT W C, et al. Nut consumption and decreased risk of sudden cardiac death in the physicians' Health Study[J]. Archives of Internal Medicine, 2002, 162(12):1 382-1 387.
[5] 任欢. 新疆核桃生产发展优势及竞争力研究[D]. 乌鲁木齐:新疆农业大学,2015.
[6] 岳秀洁.辣木叶有效成分的提取、分离纯化及其活性研究[D]. 广州:华南理工大学, 2016.
[7] 孙文花. 辣木栽培技术[J]. 中国农技推广, 2016, 32(8):51-52.
[8] 陈逸鹏, 梁建芬. 辣木叶功效及相关成分研究进展[J]. 食品研究与开发, 2016, 37(14):201-205.
[9] 初雅洁, 符史关,龚加顺. 云南不同产地辣木叶成分的分析比较[J]. 食品科学, 2016, 37(2):160-164.
[10] 牛芸民, 杨天林. 若干重要微量金属元素的生物化学功能及其与人体健康的关系[J]. 微量元素与健康研究, 2014, 31(2):78-80.
[11] 周熙成, 白树民. 益生元对钙代谢的影响[J]. 中国骨质疏松杂志, 2001, 7(4):365-366.
[12] 王新坤, 仲磊,杨润强,等. 植物籽粒中植酸及其降解方法与产物研究进展[J]. 食品科学, 2014, 35(3):301-306.
[13] 陈曦, 李英英,宋铁英. 乳酸菌对豆粕发酵中特定菌群与多肽水平的影响[J]. 粮食与饲料工业, 2017(6):46-49.
[14] 《植物蛋白饮料核桃露(乳)》(GB/T 31325—2014)标准解读[J]. 饮料工业, 2016, 19(5):5-7.
[15] 徐效圣, 张志强,许铭强,等. 乳化剂和增稠剂对核桃乳饮料稳定性的影响[J]. 中国食品添加剂, 2013(2):219-223.
[16] 陈丹, 张传林,朱冬眉,等. 超微粉碎牦牛骨泥经发酵和酶解后游离钙和氨基酸态氮的变化[J]. 中国酿造, 2008(1):41-43.
[17] 胡明明, 潘开林,牛跃庭,等. 植物蛋白饮料稳定性及其分析方法研究进展[J]. 食品工业科技, 2018,39(6):334-339.
[18] 龙肇, 赵强忠,赵谋明. 单甘酯和蔗糖酯复配比例对核桃乳稳定性的影响[J]. 食品与发酵工业, 2009, 35(5):181-184.
[19] 丁保淼, 覃瑞,熊海容,等. 植物蛋白饮料及其稳定性的研究进展[J]. 食品安全质量检测学报, 2019, 10(1):160-165.
[20] 沈金荣, 史梦珂,邓泽元,等. 大豆复合植物蛋白饮料配方优化及其理化性质[J]. 食品工业科技, 2018(2):175-181.
[21] NISHINARI K, FANG Y, GUO S, et al. Soy proteins: A review on composition, aggregation and emulsification[J]. Food Hydrocolloids, 2014, 39(2):301-318.
Outlines

/