Rapid detection of Salmonella in chicken meat by fluorescent labeled DNA-magnetic graphene oxide magnetic separation technology

  • MENG Yuanyuan ,
  • LIU Lili ,
  • YANG Xiaopan ,
  • DAI Xiaoning ,
  • CHEN Ke
Expand
  • (College of food and bioengineering, Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security, Luoyang 471023, China)

Received date: 2019-08-25

  Online published: 2020-02-02

Abstract

In order to achieve high sensitivity and rapid detection of Salmonella in chicken, a new method based on fluorescence labeling DNA-magnetic graphene oxide(GO) magnetic separation technology was established. The method was used to optimize the detection conditions of Salmonella target DNA and to detect Salmonella in artificially contaminated chicken. The results showed that the optimum detection conditions for Salmonella target DNA were as follows: Fe3O4/GO 3.2×10-4 g/mL, reaction time of Fe3O4/GO with Salmonella capture probe 60 min, 37 ℃, hybridization time of DNA probe 120 min and enrichment multiple 5 times. There was a good linear relationship between the target DNA concentration and fluorescence intensity within the range of 0.005-1 pmol/L, and the lower limit of detection was 5 fmol/L (S/N=3). Under optimal conditions, the minimum detection limit for Salmonella contaminated chicken samples was 102 CFU/mL (S/N=3). This method only needed 5 h in the whole detection process, with simple operation, high sensitivity, strong specificity and accurate and reliable results, which could realize the rapid detection of Salmonella. This study can provide a new idea for the detection of Salmonella and other pathogenic bacteria.

Cite this article

MENG Yuanyuan , LIU Lili , YANG Xiaopan , DAI Xiaoning , CHEN Ke . Rapid detection of Salmonella in chicken meat by fluorescent labeled DNA-magnetic graphene oxide magnetic separation technology[J]. Food and Fermentation Industries, 2020 , 46(12) : 251 -257 . DOI: 10.13995/j.cnki.11-1802/ts.022085

References

[1] YEH H Y, KOJIMA K, MOBLEY J A. Epitope mapping of Salmonella, flagellar hook-associated protein, FlgK, with mass spectrometry-based immuno-capture proteomics using chicken (Gallus gallus domesticus) sera[J]. Veterinary Immunology and Immunopathology, 2018, 201:20-25.
[2] 翟立公. 沙门氏菌及其致病性血清型分子检测技术研究及在食品中的应用[D]. 南京:南京农业大学, 2015.
[3] 杨柳, 胡文忠, 姜爱丽,等. 分子生物学方法检测沙门氏菌的研究进展[J]. 食品工业科技, 2016, 37(9):372-375;379.
[4] 张勤, 池明月. 沙门氏菌快速检测的研究进展[J]. 医学理论与实践, 2018, 31(10):36-38.
[5] 谢同彬, 梅林. 基于纳米金复合探针的沙门氏菌快速定量检测[J]. 食品与机械, 2017, 33(11):57-60.
[6] SAHA S,TANMOY A M, ANDREWS J R, et al. Evaluating PCR based detection of Salmonella typhi and paratyphi a in the environment as an enteric fever surveillance tool[J]. American Journal of Tropical Menicine and Hygiene,2019,20 (1):43-46.
[7] XIANG C, JIAQI Z, ZE W, et al. Combination of Zn2+and betaine can eliminate the effect of DNA fragments with different GC content on gene chip[J]. Acta Biochimica et Biophysica Sinica, 2018, 50(8):826-827.
[8] BOZORGMEHR A, YAZDANPARAST R, MOLLASALEHI H. Non-crosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi[J]. Journal of Nanoparticle Research, 2016, 18(12):1-8.
[9] YANG Q, DOMESLE K J, GE B. Loop-mediated isothermal amplification for Salmonella detection in food and feed: Current applications and future directions[J]. Foodborne Pathogens and Disease, 2018, 15(6):309-331.
[10] 李杰, 丁承超, 翟续昭,等. 沙门氏菌检测技术研究进展[J]. 微生物学杂志, 2017, 37(4):126-132.
[11] MA Z, YANG X Y,FANG Y Z, et al. Detection of Salmonella infection in chickens by an indirect enzyme-linked immunosorbent assay based on presence of pagc antibodies in sera[J].Foodborne Pathogens and Disease, 2018, 15(2):109-113.
[12] DU M, LI J, ZHAO R, et al. Effective pre-treatment technique based on immune-magnetic separation for rapid detection of trace levels of Salmonella in milk[J]. Food Control, 2018,91: 92-99.
[13] XIA S, YU Z, LIU D, et al. Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk[J]. Food Control, 2016, 59:507-512.
[14] 罗荣, 任秀, 崔生辉. 食品中沙门氏菌快速检测技术研究进展[J]. 食品安全质量检测学报, 2016, 7(4):1 468-1 472.
[15] 车玉兰. 基于荧光标记的致病菌快速检测及细菌与细胞相互作用研究[D]. 重庆:重庆大学,2017.
[16] LI L, LI Q, LIAO Z, et al. Magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple pathogens[J]. Analytical Chemistry, 2018, 90(15):9 621-9 628.
[17] YU S, TANG Y, YAN M, et al. A fluorescent cascade amplification method for sensitive detection of Salmonella based on magnetic Fe3O4 nanoparticles and hybridization chain reaction[J]. Sensors and Actuators B: Chemical, 2019, 279(15):31-37.
[18] HU J, JIANG Y Z, TANG M, et al. Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection[J]. Analytical Chemistry, 2018,91(1): 1 178-1 184.
[19] 刘闯. 磁性氧化石墨烯的制备及同时吸附水中Cd(Ⅱ)和As(Ⅴ)的研究[D]. 湘潭:湘潭大学,2015.
[20] 杨宇, 牛承岗, 曾光明. 磁性富集荧光法检测大肠杆菌[J]. 中南大学学报(自然科学版),2017,48(5):1 134-1 140.
[21] 胡冰雪, 舒沿沿, 潘道东,等. 荧光假单胞菌、沙门氏菌和单增李斯特菌多重PCR检测方法的建立[J]. 食品科学, 2016, 37(20):209-214.
[22] 马小媛, 李双, 吴世嘉,等. 基于上转换荧光标记和磁分离技术的沙门氏菌DNA检测新方法[J]. 食品与生物技术学报, 2013, 32(12):1 303-1 310.
[23] MAO X, YANG L, SU X L, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7[J]. Biosensors and Bioelectronics, 2006, 21(7):1 178-1 185.
[24] 中华人民共和国卫生部. GB 4789.4—2016 食品安全国家标准 食品微生物学检验 沙门氏菌检验[S].北京:中国标准出版社,2016.
[25] 张童利. 鸡白痢沙门氏菌常规和实时荧光定量PCR检测方法的建立[D]. 哈尔滨:东北农业大学,2017.
[26] 伍燕华,牛瑞江,赖卫华,等. 双抗夹心酶联免疫吸附法检测沙门氏菌[J]. 食品工业科技, 2014, 35(10):62-65.
[27] 张东方,袁飞,王娉,等. 免疫磁捕获-实时荧光PCR快速检测鸡肉中沙门氏菌[J]. 食品与发酵工业, 2011, 37(8):142-147.
[28] FAVRIN S J, JASSIM S A, GRIFFITHS M W. Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica serovar enteritidis in broth[J]. Applied and Environmental Microbiology, 2001, 67(1):217-224.
Outlines

/