Effect and mechanisms of carbon sources on acid tolerance of Bacillus coagulans

  • LI Changfu ,
  • WU Ying ,
  • ZHOU Zilyu ,
  • CAO Li ,
  • WANG Dahong ,
  • GU Shaobin
Expand
  • 1 (College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China)
    2 (Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China)
    3 (National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China)

Received date: 2019-08-07

  Online published: 2020-02-10

Abstract

In order to analyze the effects of carbohydrates in food on probiotic′s biological characteristics, and relationship between carbohydrates and acid-tolerance of Bacillus coagulans was studied. When fructose was used as the carbon source, the intracellular ATP content of B. coagulans reached 5.8181 mol/g prot, which was 1.95 times higher than that of the control group. At the same time, the contents of heptadecanoic acid and total unsaturated fatty acid increased significantly, reaching 61.87% and 26.49%, respectively. The intracellular ATP content of Glu, Arg, Asp and Lys closely related to the bacteria′s acid tolerance ability showed a sharp increase. The acid resistance was 21% higher than that of the control group, 27.84 times higher than that of the organic acid group, and 35.63 times higher than that of the lactose group. In conclusion, different carbon sources have significantly different effects on probiotic acid tolerance ability.

Cite this article

LI Changfu , WU Ying , ZHOU Zilyu , CAO Li , WANG Dahong , GU Shaobin . Effect and mechanisms of carbon sources on acid tolerance of Bacillus coagulans[J]. Food and Fermentation Industries, 2019 , 45(24) : 16 -21 . DOI: 10.13995/j.cnki.11-1802/ts.021926

References

[1] 董惠钧,姜俊云,郑立军,等. 新型微生态益生菌凝结芽孢杆菌研究进展[J]. 食品科学, 2010,31(1):292-294.
[2] MAJEED M, MAJEED S, NAGABHUSHANAM K, et al. Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods[J]. International Journal of Food Science & Technology, 2016,51(4):894-901.
[3] WU C, ZHANG J, CHEN W, et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance[J]. Applied Microbiology & Biotechnology, 2012,39(2):707-722.
[4] 赵小茜,魏旭丹,陈戴玲,等. 产多糖植物乳杆菌的耐酸耐胆盐能力[J]. 乳业科学与技术, 2016,39(3):1-3.
[5] 熊涛,刘妍妍,黄涛,等. 副干酪乳杆菌NCU622耐酸耐胆盐及其黏附性能[J]. 食品科学, 2015,36(5):93-98.
[6] 杨郁,张丽靖,天知诚吾. 乳酸菌耐酸机理的研究[J]. 食品工程, 2007(4):42-45.
[7] 吴重德,何桂强,张娟,等. 酸胁迫对干酪乳杆菌细胞膜生理特性的影响[J]. 食品工业科技, 2014,35(5):122-125.
[8] 陈霞,孙志宏,张文弈,等. 酸胁迫对干酪乳杆菌H+-ATP酶基因表达的影响[J]. 微生物学通报, 2007,34(3):479-482.
[9] VAN D G M, SERROR P, CHERVAUX C, et al. Stress responses in lactic acid bacteria[J]. Antonie Van Leeuwenhoek, 2002,82(1-4):187-216.
[10] DIEZ-GONZALEZ F, KARAIBRAHIMOGLU Y. Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7[J]. Journal of Applied Microbiology, 2010,96(6):1 237-1 244.
[11] KOPONEN J, LAAKSO K, KOSKENNIEMI K, et al. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG[J]. Journal of Proteomics, 2012,75(4):1 357-1 374.
[12] LU P, MA D, CHEN Y, et al. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia[J]. Cell Res, 2013,23(5):635-644.
[13] 赵丽娜. 凝结芽孢杆菌的筛选及高密度培养工艺研究[D]. 洛阳:河南科技大学, 2017.
[14] 郭泽镔. 超高压处理对莲子淀粉结构及理化特性影响的研究[D]. 福州:福建农林大学, 2014.
[15] 韩金祥,赵乃倩,王丽. 果糖诱导肥胖和内脏脂肪蓄积的研究进展[J]. 生命科学, 2017,29(8):790-796.
[16] 陈南南,徐歆,商丰才,等. 不同防腐剂对3种模式腐败菌抑菌效果的比较[J]. 食品科学, 2011,32(1):14-18.
[17] KULLEN M J, KLAENHAMMER T R. Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: Gene structure, cloning and characterization[J]. Molecular microbiology, 1999,33(6):1 152-1 161.
[18] HUANG R, PAN M, WAN C, et al. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress[J]. Journal of Dairy Science, 2016,99(2):1 002-1 010.
[19] BROWN J L, ROSS T, MCMEEKIN T A, et al. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance[J]. International journal of food microbiology, 1997,37(2-3):163-173.
[20] 杨扬,李欣,饶伟丽,等. 高密度二氧化碳诱变的大肠杆菌突变菌株脂肪酸及蛋白质组分析[J]. 中国食品学报, 2016,16(5):188-195.
[21] SCHOUG Å, FISCHER J, HEIPIEPER H J, et al. Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3[J]. Journal of Industrial Microbiology & Biotechnology, 2008,35(3):175-181.
[22] 杨旭. 长双歧杆菌和短双歧杆菌的耐酸机制研究[D]. 上海:上海交通大学, 2015.
[23] 田喜梅. 植物乳杆菌ZDY 2013的耐酸机制研究及其谷氨酸脱氢酶基因的克隆表达[D]. 南昌:南昌大学, 2016.
[24] 袁峥. 嗜酸乳杆菌耐酸机理研究[D]. 洛阳:河南科技学院, 2013.
[25] COTTER P D, HILL C. Surviving the acid test: Responses of gram-positive bacteria to low pH[J]. Microbiology & Molecular Biology Reviews Mmbr, 2003,67(3):429-453.
Outlines

/