[1] ANDERSSON A A M, ARMÖ E, GRANGEON E, et al. Molecular weight and structure units of (1-3, 1-4)-β-glucans in dough and bread made from hull-less barley milling fractions[J]. Journal of Cereal Science, 2004, 40(3): 195-204.
[2] ZHU Fengmei, DU Bin, XU Baojun. A critical review on production and industrial applications of beta-glucans[J]. Food Hydrocolloids, 2016, 52:275-288.
[3] HUSSAIN P R, RATHER S A, SURADKAR P P. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β- glucan[J]. Radiation Physics & Chemistry, 2018,144:218-230.
[4] GILDOMAR L V J, Flávia O DL, ELISANGELA F B, et al. Extraction optimization and antinociceptive activity of (1-3)-β-D-glucan from Rhodotorula mucilaginosa [J].Carbohydrate Polymers, 2014, 105(1): 293-299.
[5] BORCHANI C, FONTEYN F, JAMIN G, et al. Physical, functional and structural characterization of the cell wall fractions from baker’s yeast Saccharomyces cerevisiae[J].Food Chemistry, 2016,194: 1 149-1 155.
[6] MORENOMENDIETA S, GUILLÉN D, HERNÁNDEZPA-NDO R, et al. Potential of glucans as vaccine adjuvants: A review of the α-glucans case[J]. Carbohydrate Polymers, 2017, 165:103-114.
[7] PARK J S, LIM Y M, BAIK J, et al. Preparation and evaluation of β-glucan hydrogel prepared by the radiation technique for drug carrier applications[J]. International Journal of Biological Macromolecules, 2018, 118(Pt A). DOI: 10.1016/j.ijbiomac.2018.06.068.
[8] ZHU F, DU B, XU B. A critical review on production and industrial applications of beta-glucans[J]. Food Hydrocolloids, 2016, 52:275-288.
[9] IZYDORCZYK M S, STORSLEY J, LABOSSIERE D, et al. Variation in total and soluble beta-glucan content in hulless barley: effects of thermal, physical, and enzymic treatments[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4):982-989.
[10] LAZARIDOU A, BILIADERIS C G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects[J]. Journal of Cereal Science, 2007, 46(2):101-118.
[11] SKENDI A, BILIADERIS C G, LAZARIDOU A, et al. Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avenabysantina[J]. Journal of Cereal Science, 2003, 38(1):15-31.
[12] LIN S, GUO H, GONG J D B, et al. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars[J]. Journal of Cereal Science, 2018, 68(81):69-75.
[13] MOZA J, GUJRAL H S. Starch digestibility and bioactivity of high altitude hulless barley[J]. Food Chemistry, 2016, 194:561-568.
[14] MIKKELSEN M S, MEIER S, JENSEN M G, et al. Barley genotypic β-glucan variation combined with enzymatic modifications direct its potential as a natural ingredient in a high fiber extract[J]. Journal of Cereal Science, 2017, 67(75):45-53.
[15] BENITO-ROMÁN Ó, ALONSO E, COCERO M J. Pressurized hot water extraction of β-glucans from waxy barley[J]. Journal of Supercritical Fluids, 2013, 73:120-125.
[16] TEO C C, TAN S N, YONG J W, et al. Pressurized hot water extraction (PHWE)[J]. Journal of Chromatography A, 2010, 1217(16):2 484-2 494.
[17] SALGADO M, RODRÍGUEZ-ROJO Soraya, REIS R L, et al. Preparation of barley and yeast β-glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release[J]. The Journal of Supercritical Fluids, 2017(127):158-165.
[18] SAASTAMOINEN M, HIETANIEMI V, PIHLAVA J M, et al. β-Glucan contents of groats of different oat cultivars in official variety, in organic cultivation, and in nitrogen ferilization trials in Finland[J]. Agricultural & Food Science, 2004, 13(1):68-79.
[19] ROBERT W. WELCH, JANET D. Lloyd. Kernel (1-3) (1-4)-β- D -glucan content of oat genotypes[J]. Journal of Cereal Science, 1989, 9(1):35-40.
[20] CHRISTIAN I. ABUAJAH, AUGUSTINE C. OGBONNA, et al. Variety and germination time effect on total β-glucan, water-insoluble β-glucan, water-soluble β-glucan components and β-glucanase levels in improved sorghum varieties SK5912, KSV8 and ICSV400 before and after malting and their relationships to wort viscosity[J]. Journal of the Institute of Brewing, 2016, 122(1):93-101.
[21] TAMURA M, IMAIZUMI R, SAITO T, et al. Studies of the texture, functional components andinvitrostarch digestibilityof rolled barley[J].Food Chemistry, 2019, 274:672-678.
[22] KHAN A A, GANIA A, MASOODI F A, et al. Structural, rheological, antioxidant, and functional properties of β-glucan extracted from edible mushrooms Agaricusbisporus, Pleurotusostreatus and Coprinusattrimentarius[J].Bioactive Carbohydrates and Dietary Fibre, 2017,11:67-74.
[23] CARBONERO E R, RUTHES A C, FREITAS C S, et al. Chemical and biological properties of a highly branched β-glucan from edible mushroom Pleurotussajor-caju[J]. Carbohydrate Polymers, 2012, 90(2):814-819.
[24] BAGGIO C H, FREITAS C S, MARCON R, et al. Antinociception of β-d-glucan from Pleurotus pulmonarius is possibly related to protein kinase C inhibition[J]. International Journal of Biological Macromolecules, 2012, 50(3): 872-877.
[25] FANG J, WANG Y, LV X, et al. Structure of a β-glucan from Grifolafrondosa and its antitumor effect by activating Dectin-1/Syk/NF-B signaling[J]. Glycoconjugate Journal, 2012, 29(5-6): 365-377.
[26] SOVRANI V, DE JESUS L I, SIMAS-TOSIN F F, et al. Structural characterization and rheological properties of a gel-like β-D-glucan from Pholiota nameko[J]. Carbohydrate Polymers, 2017, 169:1-8.
[27] FRAUNHOFER M E, GEISSLER A J, WEFERS D, et al. Characterization of β-glucan formation by Lactobacillus brevis TMW 1.2112 isolated from slimy spoiled beer[J]. International Journal of Biological Macromolecules, 2018, 107:874-881.
[28] BAI Junying, REN Yikai, LI Yan, et al. Physiological functionalities and mechanisms of β-glucans[J]. Trends in Food Science & Technology, 2019,88: 57-66.
[29] LI W, CUI S W, WANG Q, et al. Studies of aggregation behaviours of cereal β-glucans in dilute aqueous solutions by light scattering: Part I. Structure effects[J]. Food Hydrocolloids, 2011, 25(2):189-195.
[30] AHMAD A, ANJUM F, ZAHOOR T, et al. Extraction and characterization of beta-D-glucan from oat for industrial utilization[J]. International Journal of Biological Macromolecules, 2010, 46(3):304-309.
[31] KUREK M A, KARP S, STELMASIAK A. Effect of natural flocculants on purity and properties of β-glucan extracted from barley and oat[J]. Carbohydrate Polymers, 2018, 188:60-67.
[32] XU J, INGLETT G E, LIU S X, et al. Micro-heterogeneity and micro-rheological properties of high-viscosity barley β-glucan solutions studied by diffusing wave spectroscopy (DWS)[J]. Food Biophysics, 2016, 11(4):1-6.
[33] HUAN G, SHANG L, MIN L, et al. Characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of β-glucans from different Qingke (Tibetan hulless barley) cultivars[J]. International Journal of Biological Macromolecules, 2018, 120:2 517-2 522.
[34] AHMED J, THOMAS L, ARFAT Y A. Effects of high hydrostatic pressure on functional, thermal, rheological and structural properties of β-D-glucan concentrate dough[J]. LWT-Food Science and Technology, 2016(70): 63-70.
[35] LI W, CUI S W, WANG Q, et al. Studies of aggregation behaviours of cereal β-glucans in dilute aqueous solutions by light scattering: Part I. Structure effects[J]. Food Hydrocolloids, 2011, 25(2):189-195.
[36] AHMAD M, GANI A, SHAH A, et al. Germination and microwave processing of barley (Hordeum vulgare L.) changes the structural and physicochemical properties of β-D-glucan & enhances its antioxidant potential[J]. Carbohydrate Polymers, 2016(153): 696-702.
[37] VAIKOUSI H, BILIADERIS C G, IZYDORCZYK M S. Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size[J]. Journal of Cereal Science, 2004, 39(1):119-137.
[38] LIU Y, ZHANG J, TANG Q, et al. Rheological properties of β-d-glucan from the fruiting bodies of Ganoderma lucidum[J]. Food Hydrocolloids, 2016, 58:120-125.
[39] AGBENORHEVI J K, KONTOGIORGOS V, KIRBY A R, et al. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight[J]. International Journal of Biological Macromolecules, 2011, 49(3):0-377.
[40] ZIELKE C, STRADNER A, NILSSON L. Characterization of cereal β-glucan extracts: Conformation and structural aspects[J]. Food Hydrocolloids, 2018, 79: 218-227.
[41] MESSIA M C, ORIENTE M, ANGELICOLA M, et al. Development of functional couscous enriched in barley β-glucans[J]. Journal of Cereal Science, 2019, 85:137-142.
[42] ANNE Salonen, WILLEM M. de Vos. Impact of diet on human intestinal microbiota and health[J]. Annual Review of Food Science and Technology, 2014 (5): 239-262.
[43] MARTENS E C, KELLY A G, TAUZIN A S, et al. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes[J]. Journal of Molecular Biology, 2014, 426(23):3 851-3 865.
[44] GONG L, CAO W, CHI H, et al. Whole cereal grains and potential health effects: Involvement of the gut microbiota[J]. Food Research International, 2018, 103:84-102.
[45] TAMURA K, HEMSWORTH G R, DJEAN Guillaume, et al. Molecular Mechanism by which prominent human gut bacteroidetes utilize mixed-linkage beta-glucans, major health-promoting cereal polysaccharides[J]. Cell Reports, 2017, 21(7):417-430.
[46] COCKBURN D W, KOROPATKIN N M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease[J]. Journal of Molecular Biology, 2016:3 231-3 250.
[47] RÍOS-COVIÁN David, PATRICIA R M, ABELARDO M, et al. Intestinal short chain fatty acids and their link with diet and human health[J]. Frontiers in Microbiology, 2016(7):1-6.
[48] THAMMAKITI S, SUPHANTHARIKA M, PHAESUWAN T, et al. Preparation of spent brewer’s yeastb-glucans for potential applications in the food industry [J]. International Journal of Food Science and Technology, 2004, 39: 21-29.
[49] ASMA A K, ADIL G, MASOODI F A, et al. Structural, thermal, functional, antioxidant & antimicrobial properties of β-d-glucan extracted from baker's yeast (Saccharomyces cereviseae)-Effect of γ-irradiation[J]. Carbohydrate Polymers, 2016, 140(442): 442-450.
[50] GRUNDY M M L, QUINT J, RIEDER A, et al. Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan[J]. Carbohydrate Polymers, 2017, 166:387-397.
[51] PAULA R D, ABDEL-AAL E S M, MESSIA M C, et al. Effect of processing on the beta-glucan physicochemical properties in barley and semolina pasta[J]. Journal of Cereal Science, 2017, 75:124-131.
[52] SUN T, QIN Y Y, XIE J, et al. Effect of Maillard reaction on rheological, physicochemical and functional properties of oat β-glucan[J]. Food Hydrocolloids, 2019,89: 90-94.
[53] DJURLE S, ANDERSSON A A M, ANDERSSON R. Milling and extrusion of six barley varieties, effects on dietary fibre and starch content and composition[J]. Journal of Cereal Science, 2016, 72:146-152.
[54] LIU R, LI J, WU T, et al. Effects of ultrafine grinding and cellulase hydrolysis treatment on physicochemical and rheological properties of oat (Avena nuda, L.) β-glucans[J]. Journal of Cereal Science, 2015, 65:125-131.
[55] YAN X, YE R, CHEN Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran[J]. Food Chemistry, 2015, 180:106-115.
[56] REGAND A, TOSH S M, WOLEVER T M S, et al. Physicochemical properties of beta-glucan in differently processed oat foods influence glycemic response[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19):8 831-8 838.