Correlation between quality change and protein oxidation of turbot(Scophthalmus maximus) during refrigerated and ice storage

  • ZOU Zhaoyang ,
  • ZHAO Feng ,
  • OU Shuai ,
  • SU Zhiwei ,
  • MU Weili ,
  • LIU Meng ,
  • ZHOU Deqing
Expand
  • 1 (College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
    2 (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China)
    3 (Qingdao Yihexing Food Co., Ltd., Qingdao 26600, China)
    4 (Penglai Huiyang Food Co., Ltd., Penglai 265600, China)

Received date: 2019-07-30

  Online published: 2020-02-16

Abstract

In order to study the relationship between quality change and protein oxidation of turbot during storage, changes in protein oxidation parameters and quality indicators during refrigerated (4 °C) and ice (0 °C) storage were determined, and the correlation among them was also analyzed. The results showed that with the prolongation of storage time, water-holding capacity, surface hydrophobicity, carbonyl content and disulfide content for two groups of turbot increased, while sensory score, textural parameters and total sulfhydryl content showed a decreasing trend. Taking all these indicators into consideration, quality deterioration of turbot fillets during refrigerated and ice storage increased with the intensification of protein oxidation, and quality deterioration as well as protein oxidation for the refrigerated group were obviously faster than that of the iced group. At same storage temperature, high degree of protein oxidation contributed to bad quality for turbot fillets. In addition, a good correlation between protein oxidation parameters and quality indicators for turbot was obtained during refrigerated and ice storage. Therefore, quality change of turbot during storage is closely related to protein oxidation.

Cite this article

ZOU Zhaoyang , ZHAO Feng , OU Shuai , SU Zhiwei , MU Weili , LIU Meng , ZHOU Deqing . Correlation between quality change and protein oxidation of turbot(Scophthalmus maximus) during refrigerated and ice storage[J]. Food and Fermentation Industries, 2019 , 45(22) : 213 -219 . DOI: 10.13995/j.cnki.11-1802/ts.021843

References

[1] 雷霁霖,梁萌青,刘新富,等. 大菱鲆营养成分与食用价值研究概述[J]. 海洋水产研究, 2008, 29(4): 112-115.
[2] 徐乐俊,吕永辉,高宏泉,等. 中国渔业统计年鉴[M]. 北京:中国农业出版社, 2018: 26.
[3] ESTEVEZ M. Protein carbonyls in meat systems: A review[J]. Meat Science, 2011, 89(3): 259-279.
[4] FUENES V, VENTANAS J, MORCUENDE D, et al. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure[J]. Meat Science, 2010, 85(3): 506-514.
[5] 陈霞霞,杨文鸽,吕梁玉,等. 羟自由基氧化体系对银鲳肌原纤维蛋白生化特性及其构象单元的影响[J]. 食品科学, 2016, 37(23): 135-141.
[6] HUFF-LONERGAN E, LONERGAN S M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes[J]. Meat Science, 2005, 71(1): 194-204.
[7] DELLES R M, XIONG Y L. The effect of protein oxidation on hydration and water-binding in pork packaged in an oxygen-enriched atmosphere[J]. Meat Science, 2014, 97(2): 181-188.
[8] ROWE L J, MADDOCK K R, LONERGAN S M, et al. Influence of early postmortem protein oxidation on beef quality[J]. Journal of Animal Science, 2004, 82(3): 785-796.
[9] 王尊,谢晶,钱韻芳. 带鱼冷藏过程中品质变化与水分迁移的相关性[J]. 食品科学, 2017,38(13): 263-268.
[10] 林婉玲,杨贤庆,李来好,等. 脆肉鲩质构与感官评价的相关性研究[J]. 现代食品科技, 2013,29(1): 1-7.
[11] 张远,赵改名,黄现青,等. 性别对猪肉品质特性的影响[J]. 食品科学, 2014, 35(7): 48-52.
[12] CHIN K B, GO M Y, XIONG Y L. Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation[J]. Meat Science, 2009, 81(3): 565-572.
[13] PARK D, XIONG Y L, ALDERTON A L. Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein[J]. Food Chemistry, 2007, 101(3): 1 239-1 246.
[14] 李学鹏,王祺,周凯,等. 丙烯醛氧化对大黄鱼肌肉组织和肌原纤维蛋白结构性质的影响[J]. 现代食品科技, 2014,30(10): 1-7.
[15] 赵冰,李素,张顺亮,等. 蛋白质氧化对肌原纤维蛋白凝胶构效关系的影响[J]. 食品科学, 2018, 39(3): 55-61.
[16] THANNHAUSER T W, THEODORE W. Analysis for disulfide bonds in peptides and proteins[J]. Methods in Enzymology, 1987, 143(1): 115-119.
[17] CHELH I, GATELLIER P, SANTELHOUTELLIER V. Technical note: A simplified procedure for myofibril hydrophobicity determination[J]. Meat Science, 2006, 74(4): 681-683.
[18] KIM Y M, PAIK H D, LEE D S. Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film[J]. Journal of the Science of Food and Agriculture, 2002, 82(9): 998-1 002.
[19] 崔正翠,许钟,杨宪时,等. 大菱鲆冷藏过程中的鲜度变化与货架期[J]. 食品科学, 2011, 32(2): 285-289.
[20] 王文娟,汪水平,李代金,等. 不同贮藏温度齐口裂腹鱼肌肉品质的变化及货架期预测[J]. 食品科学, 2014, 35(14): 229-233.
[21] DASLVA C C, MÁRSICO E T, RIBEIRO R O R, et al. Studies of the effect of sodium tripolyphosphate on frozen shrimp by physicochemical analytical methods and low field nuclear magnetic resonance(LF 1H NMR)[J]. LWT-Food Science and Technology, 2013, 50(2): 401-407.
[22] 邓星星,雷骆,杨合霖,等. 不同贮藏温度及时间对白乌鳢肌肉品质及营养成分的影响[J]. 食品与发酵工业,2019,45(14):170-176.
[23] 王晓君,沈秋霞,卢朝婷,等. 不同贮藏温度下南方大口鲇品质的变化[J]. 食品与发酵工业, 2018, 44(11): 249-254.
[24] 徐永霞,张朝敏,赵佳美,等. 微冻和冷藏对牙鲆贮藏品质的影响[J]. 食品工业科技, 2016, 37(4): 337-341.
[25] CHAMBA M V M, HUA Y, KATIYO W. Oxidation and structural modification of full-fat and defatted flour based soy protein isolates induced by natural and synthetic extraction chemicals[J]. Food Biophysics, 2014, 9(3): 193-202.
[26] LU H, WANG H, LUO Y. Changes in protein oxidation, water holding capacity, and texture of bighead carp(Aristichthys Nobilis) fillets under chilled and partial frozen storage[J]. Journal of Aquatic Food Product Technology, 2016, 26(5): 565-577.
[27] PASSI S, CATAUDELLA S, TIANO L, et al. Dynamics of lipid oxidation and antioxidant depletion in Mediterranean fish stored at different temperatures[J]. Biofactors, 2010, 25(1-4): 241-254.
[28] FENG X, AHN D U. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products[J]. Radiation Physics and Chemistry, 2016, 127: 27-33.
[29] 徐永霞,刘滢,姜程程,等. 电子鼻结合气质联用法分析大菱鲆冷藏过程中挥发性成分变化[J]. 食品与发酵工业, 2014, 40(1): 193-197.
[30] 吴伟. 蛋白质氧化对大豆蛋白结构和凝胶性质的影响[D]. 无锡:江南大学, 2010.
[31] BALANGE A K, BENJAKUL S. Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types and setting temperatures[J]. Food Chemistry, 2010, 120(1): 268-277.
[32] SOLADOYE O P, JUAREZ M L, AALHUS J L, et al. Protein oxidation in processed meat: Mechanisms and potential implications on human health[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(2): 106-122.
[33] LUND M N, HEINONEN M, BARON C P, et al. Protein oxidation in muscle foods: A review[J]. Molecular Nutrition and Food Research, 2011, 55(1): 83-95.
[34] BADII F, HOWELL N K. A comparison of biochemical changes in cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) fillets during frozen storage[J]. Journal of the Science of Food and Agriculture, 2002, 82(1): 87-97.
[35] LEELAPONGWATTANA K, BENJAKUL S, VISESSANGUAN W, et al. Physicochemical and biochemical changes during frozen storage of minced flesh of lizardfish (Saurida micropectoralis)[J]. Food Chemistry, 2005, 90(1-2): 141-150.
[36] TRAORE S, AUBRY L, GATELLIER P, et al. Effect of heat treatment on protein oxidation in pig meat[J]. Meat Science, 2012, 91(1): 14-21.
Outlines

/