Research progress on the bacteriostatic technology offresh-cut fruits and vegetables

  • JIN Siyuan ,
  • XIE Jing
Expand
  • 1(Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and EnergySaving Evaluation, Shanghai 201306,China)
    2(National Experimental Teaching Demonstration Center for Food Science and Engineering(Shanghai Ocean University), Shanghai 201306,China)
    3(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306,China)

Received date: 2020-02-12

  Online published: 2020-06-24

Abstract

Fresh-cut fruits and vegetables are full of nutrition, but due to juice outflow after fresh-cut and their own metabolism mechanism, postharvest decay frequently occurrs, resulting in economic losses and potential health hazards. In this paper, the main rot-causing bacteria species in fresh-cut fruits and vegetables, such as Pseudomonas and Erwinia, were reviewed. The effective sterilization technology, such as biological (plant natural extract and antagonistic bacteria), physical (ultraviolet bacteriostatic technology, pulse light bacteriostatic technology, and high voltage pulse electric field bacteriostatic technology etc.) and chemical sterilization as well as their sterilization mechanism were summarized. Based on overall consideration of various sterilization methods, the existing problems and the trends for future development were proposed.

Cite this article

JIN Siyuan , XIE Jing . Research progress on the bacteriostatic technology offresh-cut fruits and vegetables[J]. Food and Fermentation Industries, 2020 , 46(11) : 302 -306 . DOI: 10.13995/j.cnki.11-1802/ts.023613

References

[1] 宋晓雪, 胡文忠, 毕阳, 等. 鲜切果蔬中致腐微生物污染及其非热杀菌的研究进展[J]. 食品工业科技, 2014, 35(10): 351-354.
[2] CHRISTOPHE N, FREDERIC C. The microbiology of minimally processed fresh fruits and vegetables[J]. Critical Reviews in Food Science and Nutrition, 2009, 34(4): 371-401.
[3] 郁杰, 谢晶. ε-聚赖氨酸和L-抗坏血酸处理对鲜切菠菜品质的影响[J]. 食品科学, 2019, 40(17): 277-283.
[4] NGUYEN H A, KANEKO J, KAMIO Y. Temperature- dependent production of carotovoricin Er and pectin lyase in phytopathogenic Erwinia carotovora subsp. carotovora Er [J]. Biosci Biotechnol Biochem, 2002, 66(2): 444-447.
[5] 包英才, 王丹, 赵晓燕, 等. 鲜切青椒优势腐败菌的分离纯化及鉴定[J]. 食品工业科技, 2013, 34(3): 332-334;338.
[6] FARRAR, J J, NUNERZ, J J, DAVIS R M. Influence of soil saturation and temperature on soft rot of carrot[J]. Plant Disease, 1998, 84(6): 665-668.
[7] PEROMBELON M C, KELMAN A, Ecology of the soft rot Erwinia[J]. Phytopathology, 1980, 361(3): 81.
[8] HSU S T, TZENG K C, LOZANO J C. Species of Erwinia associated with soft rot disease of plant in Taiwan[C]. In Proceedings 5th International Conference Plant Pathology Bacteria, 1982.
[9] 郁杰, 谢晶. 高通量测序结合传统方法分析4 ℃下鲜切菠菜的菌群变化[J]. 食品与发酵工业, 2019, 45(9): 183-189.
[10] COLASMEDA P, ABADIAS M, ALEGRE I, et al. Effect of ripeness stage during processing on Listeria monocy-togenes growth on fresh-cut conference pears[J]. Food Microbiology, 2016, 49(3):116-122.
[11] TERLETSKIY V P, LAZAREV A M. On genotyping bacterial strains of the genera Pectobacterium and Pseudomonas: Pathogens of bacterioses in potatoes[J]. Cytology and Genetics, 2019, 53(3): 212-218.
[12] ALZANDI A A, NAGUIB D M. Pseudomonas fluorescens metabolites as biopriming agent for systemic resistance induction in tomato against Fusarium wilt[J]. Rhizosphere, 2019, 11(5): 234-231.
[13] 魏亚博, 郑鄢燕, 赵晓燕, 等. 气调箱贮藏对鲜切黄瓜品质的影响及对假单胞菌的抑制作用[J]. 食品与发酵工业, 2017, 10(2): 26-32.
[14] 金杰人, 鲁凯珩, 肖明. 荧光假单胞菌的应用与展望[J]. 上海师范大学学报(自然科学), 2019, 48(5): 526-535.
[15] 张甫生, 李蕾, 陈芳, 等. 非热加工在鲜切果蔬安全品质控制中的应用进展[J]. 食品科学, 2011, 32(9): 329-334.
[16] 宋晓雪. 纳他霉素对鲜切莴苣霉菌抑制及其对生理生化变化的影响[D]. 兰州:甘肃农业大学, 2014.
[17] 侯玉茹, 牛琳, 王宝刚, 等. 鲜切苹果臭氧水杀菌工艺研究[J]. 食品工业, 2017, 38(2): 121-125.
[18] MANZOCCO L, ALONGI M, LAGAZIO C, et al. Effect of temperature in domestic refrigerators on fresh-cut Iceberg salad quality and waste [J]. Food Research Interntional, 2017, 102: 129-135.
[19] 吴凯为, 蔡文琪, 张成东, 等. 脉冲强光杀菌技术在食品保鲜领域的研究进展[J]. 食品工业科技, 2019, 40(5): 295-299.
[20] 张艳慧, 胡文忠, 刘程惠, 等. 光电杀菌技术在鲜切果蔬保鲜中应用的研究进展[J]. 食品科学, 2018, 39(7): 1-8.
[21] 郁杰, 张雨宸, 谢晶. 低强度UV-A光循环辐照对4 ℃下鲜切菠菜品质及抗氧化能力的影响[J]. 食品与发酵工业, 2019, 45(21): 139-146.
[22] KAISM M U, KAISM M R. Yellowing of fresh-cut spinach (Spinacia oleracea, L.) leaves delayed by UV-B applications[J]. Information Processing in Agriculture, 2017,6(5): 5-6.
[23] AIHARAM, LIAN X, SHIMPHATA T, et al. Vegetable surface sterilization system using UVA light-emitting diodes[J]. The Journal of Medical Investigation, 2014, 61(3-4): 285-290.
[24] LANTE A, TINELLO F, NICOLETTO M. UV-A light treatment for controlling enzymatic browning of fresh-cut fruits[J]. Innovative Food Science and Emerging Technologies, 2016, 12(10): 29.
[25] ALLENDE A, MCEVOY J, LUO Y, et al. Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed“red oak leaf”lettuce[J]. Food Microbiolgy, 2006, 2(2): 241-249.
[26] KAACK K, LYAGER B. Treatment of slices from carrot (Daucus carota) using high intensity white pulsed light[J]. European Food Research and Technology, 2007, 224(5): 561-566.
[27] 赵越. 鲜切油麦菜和白菜脉冲强光与气调包装联合保鲜研究[D]. 沈阳: 沈阳农业大学, 2016.
[28] 樱桃. 脉冲光处理可用于鲜切杧果保鲜[J]. 中国果业信息, 2014, 31(1): 71.
[29] 张雨宸, 谢晶. LED光照灭菌技术在果蔬保鲜加工中的应用及其研究[J]. 食品与机械, 2019, 35(8): 155-160.
[30] HASENLEITNER M, PLATETZER K. In the right light: photodynamic inactivation of microorganisms using a LED-based illumination device tailored for the antimicrobial application [J]. Antibiotics (Basel, Switzerland), 2019, 9(1): 783.
[31] LI Y, WANG H, HUANG L, et al. Promoting LED light driven photocatalytic inactivation of bacteria by novel beta-Bi2O3@BiOBr core/shell photocatalyst [J]. Journal of Alloys and Compounds, 2020, 8(16): 54.
[32] KIM M J, MSKRAJNIK M, KUMAR A, et al. Inactivation by 405±5 nm light emitting diode on Escherichia coli O157∶H7, Salmonella typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity[J]. Food Control, 2016, 59(2): 99-107.
[33] DHAKAL R,BAEK K H. Short period irradiation of single blue wave-length light extends the storage period of mature green tomatoes[J].Post-harvest Biology and Technology, 2014, 90(5): 76-54.
[34] 阎瑞香, 思希军, 刘然然. 低温条件下不同LED光源对芦笋颜色变化的影响[C]. 第六届中国冷冻冷藏新技术、新设备研讨会论文集. 北京: 中国制冷空调工业协会,2013.
[35] CHARLES F, NILPRAPRUCK P, ROUX D, et al. Visible light as a new tool to maintain fresh-cut lettuce post-harvest quality[J]. Postharvest Biology and Technology, 2018, 135(3): 51-56.
[36] 李宁, 阎瑞香, 张娜. LED复合光处理对西兰花低温保鲜效果的影响[J]. 华北农学报, 2015, 30(1): 188-193.
[37] MAG, ZHANG L C, SETIAWANCK, et al. Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to a- scorbate metabolism in postharvest brocc[J]. Postharvest Biology and Technology, 2014, 94(7): 97-103.
[38] KIM M, BANG W, YU K H. 405±5 nm light emitting diodeillumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration [J]. Food Microbiology, 2017, 62(4): 124-132.
[39] 蒋耀庭, 常秀莲, 李磊. 高压静电场处理对鲜切青花菜保鲜的影响[J]. 食品科学, 2012, 33(12): 299-302.
[40] 王婷玉, 陈永丽, 吴月, 等. 高压脉冲电场对鲜切苹果中大肠杆菌杀菌效果的影响[J]. 基因组学与应用生物学, 2018, 37(7): 2 928-2 936.
[41] 陶晓赟. 高压脉冲电场(PEF)对蓝莓汁品质及杀菌机理探究[D]. 北京: 北京林业大学, 2015.
[42] LUCA S, CORSETFI A. Application of baeteriecinsin vegetable fodbiopreservation[J]. Food Microbiology, 2008, 121(2): 123-138.
[43] 郭俊花, 张增帅, 马欣, 等. 11种食药同源植物提取物对果蔬常见腐败菌的抑菌活性研究[J].天然产物研究与开发, 2019, 31(12): 2 025-2 031.
[44] RASOOLI I, REZAEI M B, ALLAMEH A. Growth inhibition and morphological alterations of Aspergillus niger by essential oils from thymus eriocalyx and Thymus x-porlock[J]. Food Control, 2006, 17(5): 359-364.
[45] 李伟锋. 生姜提取液对鲜切苹果防腐保鲜研究[D]. 杨凌:西北农林科技大学, 2012.
[46] DENG L Z, LIU K, LENG F F, et al. Effect of Ligusticum chuanxiong hort extract for antisepsis and preservation of navel orange[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 32(7): 296-302.
[47] 汪鹏翔. 植物源天然食品防腐剂的研究现状、存在问题及前景[J]. 食品安全导刊, 2017, 30(5): 140.
[48] JINHE B, ANNE P, ROBERT S, et al. Ethanol vapor and saprophytic yeast treatments reduce decay and maintain quality of intact and fresh-cut sweet cherries[J]. Postharvest Biology Technology, 2011, 62(2): 204-212.
[49] DE P E, SERRADILLA M J, RUIZMOYANO S, et al. Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunes[J]. International Journal of Food Microbiology, 2017, 2(41): 276-282.
[50] TRIAS R, LLUS B, BADOSA E, et al. Bioprotection of golden delicious apples and iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria[J]. International Journal of Food Microbiology, 2008, 123(1-2): 50-60.
Outlines

/