Expression of β-cyclodextrin glucosyltransferase from Paenibacillus campinasensis SK13.001 in Escherichia coli and the optimization of reaction conditions

  • YAO Xiaolin ,
  • ZHANG Tao ,
  • JIANG Bo
Expand
  • (State Key Laboratory of Food Science and Technology (Jiangnan University), Wuxi 214122, China)

Received date: 2010-02-13

  Online published: 2020-07-15

Abstract

Using Paenibacillus campinasensis SK13. 001 genome as a template, a gene encoding β-cyclodextrin glycosyltransferase (β-CGTase) was obtained by PCR amplification. The gene fragment was cloned into the expression vector pET-22b (+), and transformed into Escherichia coli BL21 (DE3). After fermentation, the cyclization activity of the enzyme was 15 U/mL. The reaction conditions for the conversion of starch to cyclodextrin by this enzyme were optimized by single factor experiments. The results showed that using 30 g/L corn starch (mass fraction) as the substrate, pH 7. 0 phosphate buffer as the reaction solution, adding 5 U/g dry starch of this enzyme, reacted at 55 ℃ for 8 h, the conversion rate of cyclodextrin reached 45. 63%. The mass ratio of three cyclodextrins was α∶β∶γ=7∶75∶18. By optimizing the process conditions of the enzyme reaction, it provides an approach for the industrial production of cyclodextrin.

Cite this article

YAO Xiaolin , ZHANG Tao , JIANG Bo . Expression of β-cyclodextrin glucosyltransferase from Paenibacillus campinasensis SK13.001 in Escherichia coli and the optimization of reaction conditions[J]. Food and Fermentation Industries, 2020 , 46(12) : 153 -157 . DOI: 10.13995/j.cnki.11-1802/ts.023621

References

[1] UITDEHAAG J C, VAN DER VEEN B A, DIJKHUIZEN L, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family[J]. Enzyme and Microbial Technology,2002,30(3): 295-304.
[2] PISHTIYSKI I, ZHEKOVA B. Effect of different substrates and their preliminary treatment on cyclodextrin production[J]. World Journal of Microbiology & Biotechnology, 2006, 22(2):109-114.
[3] BENDER H. Production, characterization and application of cyclodextrin[J]. Advances in Biotechnological Processes, 1986(6): 31-71.
[4] FREUDENBERG K, CRAMER F. Notizen: Die konstitution der schardinger-dextrine α, β and γ[J]. Zeitschrift für Naturforschung B, 1948, 3(11-12):464-466.
[5] LEEMHUIS H, KELLY R M, DIJKHUIZEN L. Engineering of cyclodextrin glucosyltransferases and the impact for biotechnological applications[J]. Applied Microbiology and Biotechnology, 2010, 85(4):823-835.
[6] PRAMILA R, SURESH C, NARASIMHA R D, et al. Digestion of residual β-cyclodextrin in treated egg using glucoamylase from a mutant strain of Aspergillus niger(CFTIR1105)[J]. Food Chemistry, 1999, 65(3): 297-301.
[7] 田辉,杨国武,徐颐玲,等.环状糊精与环状糊精葡萄糖基转移酶[J].工业微生物,1995,25(2):33-38.
[8] ALEXANDRA T A. Bacterial cyclodextrin glucosyltransferase[J].Enzyme and Microbial Technology, 1998, 22(8): 678-686.
[9] 王金鹏,王萍,苑征,等.γ-CGTase突变体制备及其产γ-CD条件优化[J].食品与生物技术学报,2018,37(10):13-18.
[10] 张佳瑜,吴丹,李兆丰,等.来源于软化芽孢杆菌的环糊精葡萄糖基转移酶在毕赤酵母和枯草杆菌中的表达[J].生物工程学报,2009,25(12):1 948-1 954.
[11] 金征宇,柏玉香,王金鹏.环糊精系列综述之一,环糊精葡萄糖基转移酶的筛选及其定向改造[J].食品与生物技术学报,2012,31(2):113-123.
[12] LAEMMLI B U K. Cleavage of structural proteins during assembly of head of Bacteriophage-T4[J]. Nature, 1970, 227(5 259):680-685.
[13] ATANASOVA N, KITAYSKA T, BOJADJIEVA I. et al. A novel cyclodextrin glycosyltransferase from alkaliphilic Bacillus pseudalcaliphilus 20RF: Purification and properties[J]. Process Biochemistry, 2011, 46(1):116-122.
[14] JANEČEK Š, Parallel β/α-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β-amylase: Evolutionary distance is a reflection of unrelated sequences. [J]. FEBS Letters, 1994, 353(2):119-123.
[15] IVAN P, BORIANA Z. Effect of different substrates and their preliminary treatment on cyclodextrin Production[J]. Journal of Microbiology and Biotechnology, 2006, 22:109-114.
[16] VANDERVEEN B A, VANALEBEEK G W M, UITDEHAAG J C M. et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms [J]. FEBS Journal, 2000, 267(3):658-665.
[17] DOUKYU N, KUWAHARA H, AONO R. Isolation of Paenibacillus illinoisensis that produces cyclodextrin glycosyltransferase resistant to organic solvents[J]. Bioscience Biotechnology and Biochemistry, 2003, 67(2):334-340.
[18] 谢振荣,赵三军,唐湘华,等.来源Paenibacillus sp.的β-环糊精葡萄糖基转移酶基因的克隆及在大肠杆菌中的表达[J].食品科技,2010(11):22-25;33.
[19] YOON J H, YIM D K, LEE J S, et al. Paenibacillus campinasensis sp. nov. a cyclodextrin-producing bacterium isolated in Brazil[J]. International Journal of Systematic Bacteriology, 1998, 48(3):833-837.
[20] LI Z F, ZHANG J Y, SUN Q, et al. Mutations of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhance β-cyclodextrin specificity[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18):8 386-8 391.
[21] 金征宇.碳水化合物化学:原理与应用[M].北京:化学工业出版社,2008.
Outlines

/