[1] LAZZI C, POVOLO M, LOCCI F, et al. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano[J]. International Journal of Food Microbiology, 2016, 233: 20-28.
[2] THIERRY A, VALENCE F, DEUTSCH S M, et al. Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese-A review[J]. Dairy Science & Technology, 2015, 95(6): 895-918.
[3] ZHAO C J, SCHIEBER A, GÄNZLE M G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations-A review[J]. Food Research International, 2016, 89:39-47.
[4] CAMARA S P, DAPKEVICIUS A, RIQUELME C, et al. Potential of lactic acid bacteria from Pico cheese for starter culture development[J]. Food Science and Technology International, 2019, 25(4): 303-317.
[5] BLAYA J, BARZIDEH Z, LAPOINTE G. Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the cheese environment[J]. Journal of Dairy Science, 2018, 101(4): 3 611-3 629.
[6] ÖZER E, KESENKAŞ H. The effect of using different starter culture combinations on ripening parameters, microbiological and sensory properties of Mihaliç cheese[J]. Journal of Food Science and Technology, 2019, 56(3): 1 202-1 211.
[7] SAIKI R, HAGI T, NARITA T, et al. Effects of the addition of non-starter lactic acid bacteria on free amino acid production during cheese ripening[J]. Food Science and Technology Research, 2018, 24(2): 299-309.
[8] HANNON J A, WILKINSON M G, DELAHUNTY C M, et al. Use of autolytic starter systems to accelerate the ripening of Cheddar cheese[J]. International Dairy Journal, 2003, 13 (4): 313-323.
[9] LI Y, WANG W, WANG T, et al. Regulation through microRNAs in response to low-energy N+ ion irradiation in Oryza sativa[J]. Radiation Research, 2018, 191(2): 189-200.
[10] ENKHBILEG E, FENYVESI A, BíRÓ B, et al. Mutation induction in sweet basil (Ocimum basilicum L.) by fast neutron irradiation[J]. International Journal of Horticultural Science, 2019, 25(1-2): 30-38.
[11] GUO X, ZHANG M, GAO Y, et al. A genome-wide view of mutations in respiration-deficient mutants of Saccharomyces cerevisiae selected following carbon ion beam irradiation[J]. Applied Microbiology and Biotechnology, 2019, 103(4): 1 851-1 864.
[12] ZHANG N, JIANG J, YANG J, et al. Screening of thermotolerant yeast by low-energy ion implantation for cellulosic ethanol fermentation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(9): 1 084-1 090.
[13] GU S B, LI S C, FENG H Y, et al. A novel approach to microbial breeding-low-energy ion implantation[J]. Applied Microbiology and Biotechnology, 2008, 78(2): 201-209.
[14] LIU Y, WANG L, ZHENG Z, et al. Improvement of Vitamin K2 production by Escherichia sp. with nitrogen ion beam implantation induction[J]. Plasma Science and Technology, 2015, 17(2): 159-166.
[15] 虞龙 姚驰亚,吴晓菲,等.低能氮离子注入和紫外线复合诱变选育高产酿酒酵母[J]. 辐射研究与辐射工艺学报,2017(2):6.
[16] WANG P, LI J, WANG L, et al. L(+)-lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(11): 1 363-1 368.
[17] GUO X, ZHANG M, GAO Y, et al. “Saddle-shaped” dose-survival effect, is it a general and valuable phenomenon in microbes in response to heavy ion beam irradiation?[J]. Annals of Microbiology, 2019, 69(3): 221-232.
[18] VILAITHONG T, YU L D, APAVATJRUT P, et al. Heavy ion induced DNA transfer in biological cells[J]. Radiation Physics and Chemistry, 2004, 71(3-4): 927-935.
[19] THOPAN P, YU L D, TIPPAWAN U. Critical low-energy Ar-ion beam conditions to induce direct DNA double strand break[J]. Surface and Coatings Technology, 2016, 306: 313-318.
[20] SPRINGALL L, HUGHES C, SIMONS M, et al. A novel DNA repair mechanism for the processing of low-level UV-induced damage in bacteria[J]. Biophysical Journal, 2018, 114(3): 81a-82a.
[21] ONGOL M P, TANAKA M, SONE T, et al. A real-time PCR method targeting a gene sequence encoding 16s rRNA processing protein, rimM, for detection and enumeration of Streptococcus thermophilus in dairy products[J]. Food Research International, 2009, 42(8): 893-898.
[22] FOROOTAN A, SJÖBACK R, BJÖRKMAN J, et al. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR)[J]. Biomolecular Detection and Quantification, 2017, 12(C): 1-6.
[23] DUARY R K, BATISH V K, GROVER S. Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR[J]. Research in Microbiology, 2010, 161(5): 399-405.
[24] INAGAKI N, IGUCHI A, YOKOYAMA T, et al. Molecular properties of the glucosaminidase AcmA from Lactococcus lactis MG1363: mutational and biochemical analyses[J]. Gene, 2009,447(2): 61-71.
[25] PANG X, ZHANG S, LU J, et al. Identification and functional validation of autolysis—associated genes in Lactobacillus bulgaricus ATCC BAA-365[J]. Frontiers in Microbiology, 2017, 8: 1 367.
[26] CAVENEY N A, LI F KK, STRYNADKA N CJ. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways[J]. Current Opinion in Structural Biology, 2018, 53: 45-58.
[27] XU Y, WANG T, KONG J, et al. Identification and functional characterization of AclB, a novel cell-separating enzyme from Lactobacillus casei[J]. International Journal of Food Microbiology, 2015, 203:93-100.
[28] REGULSKI K, COURTIN P,MEYRAND M, et al. Analysis of the peptidoglycan hydrolase complement of Lactobacillus casei and characterization of the major gamma-D-glutamyl-L-lysyl-endopeptidase[J]. PloS One, 2012, 7(2): e32301.