Study on functional characteristic peptides of traditional fermented horsemilk in Xilinguole League Mongolian

  • WU Peihan ,
  • WANG Yuqing ,
  • HUANGFU Jie ,
  • CHEN Liang ,
  • LUAN Chunguang ,
  • WANG Jing ,
  • PEI Jiangsen ,
  • LIU Wenying ,
  • WANG Deliang
Expand
  • 1(College of food science and pharmacy, Xinjiang Agricultural University, Urumchi 830052, China)
    2(China National Research Institute of Food and Fermentation Industries, Beijing 100015, China)
    3(Beijing Engineering Research Center of Protein and Functional Peptides, Beijing 100015, China)

Received date: 2019-10-28

  Online published: 2020-04-10

Abstract

The small molecule active milk peptides play functional roles on improving immunity and regulating physiological metabolism. Fermented horse milk has been proved to have high nutritional value and health functions. In this study, the molecular weight distribution of protein hydrolysates and main functional peptides in fermented horse milk samples were analyzed by the high-performance gel filtration chromatography (HPGFC) and ultra-high-performance liquid chromatography-electrospray ionization triple quadrupole tandem mass spectrometry (UHPLC-ESI-MS/MS). The results showed that the proportion of protein hydrolysates with molecular weight less than 1000Da was significantly increased after fermentation. Otherwise, 24 dipeptides with potential angiotensin I-converting enzyme (ACE) inhibition function were identified. Peptides VP and AF with high content and activity were labelled and their structure-activity relationships were explored. This study provides a reference for developing functional milk peptides of traditional Mongolian fermented food.

Cite this article

WU Peihan , WANG Yuqing , HUANGFU Jie , CHEN Liang , LUAN Chunguang , WANG Jing , PEI Jiangsen , LIU Wenying , WANG Deliang . Study on functional characteristic peptides of traditional fermented horsemilk in Xilinguole League Mongolian[J]. Food and Fermentation Industries, 2020 , 46(5) : 46 -51 . DOI: 10.13995/j.cnki.11-1802/ts.022639

References

[1] 丁瑞雪,王一然,乌日娜,等.发酵乳调控人体肠道营养健康的研究进展[J].食品与发酵工业,2018,44(12):281-287.
[2] PIESZKA M, LUSZCZYN′SKI J, ZAMACHOWSKA, et al. Is mare milk an appropriate food for people?-a review[J]. Annals of Animal Science,2016,16(1):33-51.
[3] 王豪, 刘振民, 章慧.酸马奶和维利的研究进展[J].食品科学,2016,37(3):247-252.
[4] 王雨晴,陈亮,贾福怀,等.UHPLC-ESI-MS/MS法测定动物源食物提取物中肌肽与鹅肌肽的含量[J].分析测试学报,2018,37(11):1 328-1 333.
[5] 郭元晟,雅梅,钱俊平,等.锡林郭勒地区生鲜马乳质量研究[J].中国饲料,2019(21):45-50.
[6] 闫彬,贺银凤.酸马奶中乳酸菌与酵母菌的共生发酵特性[J].食品科学,2012,33(7):131-137.
[7] 霍小琰,李少英,郭荣荣.酸马奶中乳酸菌的鉴定及生物学特性的研究[J].微生物学通报,2012,39(7):940-948.
[8] GUO Liang, YA Mei, GUO Yuansheng, et al. Study of bacterial and fungal community structures in traditional koumiss from Inner Mongolia[J]. Journal of Dairy Science, 2018, 102:1 972-1 984.
[9] KORHONEN H, PIHLANTO A. Bioactive peptides: Production and functionality[J]. International Dairy Journal,2006,16(9):945-960.
[10] WADA Y, BO L. Bioactive peptides derived from human milk proteins mechanisms of action[J]. Journal of Nutritional Biochemistry,2014,25(5):503-514.
[11] KARAMI Z, AKBARI-ADERGANI B. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties[J]. Journal of Food Science and Technology,2019,56(2):535-547.
[12] 刘文颖,林峰,谷瑞增,等.海洋胶原低聚肽的血管舒张和降胆固醇作用[J].食品与发酵工业,2013,39(12):7-12.
[13] CHEN Y, WANG Z, CHEN X, et al. Identification of angiotensin I-converting enzyme inhibitory peptides from koumiss, a traditional fermented mare’s milk[J]. Journal of Dairy Science, 2010, 93(3):884-892.
[14] FITZGERALD R J, MURRAY B A. Bioactive peptides and lactic fermentations[J]. International Journal of Dairy Technology,2006,59(2):118-125.
[15] FAN Mengzhu, GUO Tingting, LI Wanru, et al. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus[J]. Food Science and Human Wellness,2019,8(2):156-176.
[16] BOUNOUALA F Z,ROUDJ S, KARAM N E, et al. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity[J]. Journal of Agricultural and Food Chemistry,2017,65(42):9 324-9 332.
[17] 管骁,刘静,苏淅娜,等.血管紧张素转化酶抑制二肽抑制ACE作用的柔性分子对接[J].食品科学,2015,36(5):1-6.
[18] 胡志和,夏磊,孙振刚,等.酪蛋白水解物中ACE抑制肽分离及氨基酸序列分析[J].食品科学,2015,36(24):156-163.
[19] CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence[J]. The Journal of Biological Chemistry,1980,255(2):401-407.
[20] KOHMURA M, NIO N, KUBO K, et al. Inhibition of angiotensin-converting enzyme by synthetic peptides of human β-casein[J]. Agricultural and Biological Chemistry,1989,53(8):2 107-2 114.
[21] JANG A, JO C, KANG K S, et al. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides[J]. Food Chemistry,2008,107(1):327-336.
[22] WU J P, ALUKO R E, NAKAI S. Structural requirements of angiotensin Ⅰ-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di-and tripeptides[J]. Journal of Agricultural and Food Chemistry,2006,54(3):732-738.
[23] SEPPO L, JAUHIAINEN T, POUSSA T, et al. Fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects[J]. The American journal of clinical nutrition,2003,77(2):326-330.
[24] RONG Jingjing, ZHENG Houfeng, LIU Ming, et al. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss[J]. BMC Microbiology, 2015, 15(1):196.
[25] JUILLARD V, GUILLOT A, DOMINIQUE L B, et al. Specificity of milk peptide utilization by Lactococcus lactis[J]. Applied and Environmental Microbiology,1998,64(4):1 230-1 236.
[26] DOEVEN M K, KOK J. Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms[J]. Molecular Microbiology,2005,57(3):640-649.
[27] BARS D L, KUNJI E R, KONINGS W N, et al. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk[J].Applied and Environmental Microbiology,1995,61(8):3 024-3 030.
[28] TIMÓN M L, ANDRÉS A I, OTTE J, et al. Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin[J]. Food Research International,2018,120:643-649.
Outlines

/