[1] 陈振, 康玉凡. 豆类种子及萌发过程中功效性成分研究概述[J]. 中国食物与营养, 2012, 18(10): 27-32.
[2] 李松玉. 食用豆科作物籽粒和芽苗菜营养功能成分的研究[D]. 福州: 福建农林大学, 2012.
[3] 孙平, 于雅婷. 舌尖上的豆类食物[M]. 江苏:江苏科学技术出版社, 2014.
[4] 张姚瑶, 邓源喜, 董晓雪,等. 红豆营养保健价值及在饮料工业中的应用进展[J]. 安徽农学通报, 2017, 23(12): 153-156.
[5] HAGENBLAD J, BOSTROM E, NYGARDS L, et al. Genetic diversity in local cultivars of garden pea (Pisum sativum L.) conserved ‘on farm’ and in historical collections[J]. Genetic Resources and Crop Evolution, 2014, 61(2): 413-422.
[6] 康玉凡, 程须珍. 豆类芽菜学[M]. 北京: 高等教育出版社, 2013.
[7] SHI H L, NAM P K, MA Y F. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination[J]. Journal of Agricultural and Food Chemistry, 2010, 58(8): 4 970-4 976.
[8] HUANG X Y, CAI W X, XU B J. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time[J]. Food Chemistry, 2014, 143: 268-276.
[9] 王莘, 王艳梅, 闵卫红,等. 大豆萌发期功能性营养成分测定与分析[J]. 中国粮油学报, 2003, 18(4): 30-32.
[10] 汪洪涛, 陈成, 余芳,等. 3种大豆发芽过程中营养成分变化规律研究[J]. 食品与机械, 2015, 31(1): 30-32; 163.
[11] 吴蓓, 谭兰晶, 曾浩祥,等. 荷兰豆芽苗菜营养成分分析与食用价值评价[J]. 广东农业科学, 2014, 41(15): 25-28.
[12] 王德槟, 张德纯. 芽苗菜及栽培技术[M]. 北京: 中国农业大学出版社, 1998.
[13] 王学奎. 物生物生化实验原理和技术[M]. 北京: 高等教育出版社, 2006.
[14] WOLF B. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status[J]. Communications in Soil Science and Plant Analysis, 1982, 13(12): 1 035-1 059.
[15] XU B J, CHANG S K C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents[J]. Journal of Food Science, 2007, 72(2): 159-166.
[16] SINGLETON V L, ORTHOFER R, LAMUELA-RAVENTóS R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent[J]. Methods Enzymol, 1999, 299: 152-178.
[17] PAJAK P, SOCHA R, GALKOWSKA D, et al. Phenolic profile and antioxidant activity in selected seeds and sprouts[J]. Food Chemistry, 2014, 143: 300-306.
[18] YANG M, SHEN Q, LI L Q, et al. Phytochemical profiles, antioxidant activities of functional herb Abrus cantoniensis and Abrus mollis[J]. Food Chemistry, 2015, 177: 304-312.
[19] WANG X, XIE K L, ZHUNG H N, et al. Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine[J]. Food Chemistry, 2015, 182: 41-46.
[20] MÜLLER L, FRÖHLICH K, BÖHM V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay[J]. Food Chemistry, 2011, 129(1): 139-148.
[21] TANG D Y, DONG Y M, GUO N, et al. Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts[J]. Journal of the Science of Food and Agriculture, 2014, 94: 1 639-1 647.
[22] DUEÑAS M, HERNÁNDEZ T, ESTERLLA I, et al. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.) [J]. Food Chemistry, 2009, 117: 599-607.
[23] LUO J Q, CAI W X, WU T, et al. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities[J]. Food Chemistry, 2016, 201: 350-360.
[24] 王慧. 大豆品种及发芽时间对豆芽营养成分与产量的影响[D]. 哈尔滨: 东北农业大学, 2014.
[25] DUEÑAS M, HERNÁNDEZ T, ESTRELLA I. Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.) [J]. European Food Research and Technology, 2002, 215(6): 478-483.
[26] TROSZYÑSKA, ESTRELLA I, LÓPEZ-AMÓRES M L, et al. Antioxidant activity of pea (Pisum sativum L.) seed coat acetone extract[J]. LWT - Food Science and Technology, 2002, 35(2): 158-164.
[27] FORMICA J V, REGELSO N W. Review of the biology of quercetin and related bioflavonoids[J]. Food and Chemical Toxicology, 1995, 33(12): 1 061-1 080.
[28] 王鹏, 任顺成, 王国良. 常见食用豆类的营养特点及功能特性[J]. 食品研究与开发, 2009, 30(12): 171-174.
[29] ZHONG Y, PRIEBE M G, VONK R J, et al. The role of colonic microbiota in lactose intolerance[J]. Digestive Diseases and Sciences, 2004, 49(1): 78-83.
[30] BAI Y, XU Y, WANG B Y, et al. Comparison of phenolic compounds, antioxidant and antidiabetic activities between selected edible beans and their different growth periods leaves[J]. Journal of Functional Foods, 2017, 35: 694-702.
[31] 任顺成, 王鹏, 王国良,等. 常见食用豆类中黄酮类化合物含量的测定[J]. 中国粮油学报, 2009, 24(7): 132-137.
[32] GAN R Y, LUI W Y, CORKE H. Sword bean (Canavalia gladiata) as a source of antioxidant phenolics[J]. International Journal of Food Science and Technology, 2016, 51(1): 156-162.
[33] LIN P Y, LAI H M. Bioactive compounds in legumes and their germinated products[J]. Journal of Agricultural and Food Chemistry, 2006, 54(11): 3 807-3 814.
[34] 张昊琳, 邓媛媛, 雷广军,等. 5种食用豆及其配比组合抗氧化性研究[J]. 北京农学院学报, 2014, 29(3): 21-25; 41.
[35] SHOHAG M J I, WEI Y Y, YANG X E. Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9 137-9 143.
[36] GAN R Y, LUI W Y, WU K, et al. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review[J]. Trends in Food Science and Technology, 2017, 59: 1-14.
[37] KHANG D, DUNG T, ELZAAWEIY A, et al. Phenolic profiles and antioxidant activity of germinated legumes[J]. Foods, 2016, 5(2): 27-36.
[38] LIU B G, GUO X N, ZHU K X, et al. Nutritional evaluation and antioxidant activity of sesame sprouts[J]. Food Chemistry, 2011, 129: 799-803.
[39] CEVALLOS-CASALS B A, CISNEROSL-ZEVALLOS L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species[J]. Food Chemistry, 2010, 119(4): 1 485-1 490.
[40] 于立梅, 于新, 曾晓房,等. 不同豆类发芽过程中营养成分的变化[J]. 食品与发酵工业, 2010, 36(7): 23-26.
[41] RADGHIR R, LIN Y, SHETTY K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors[J]. Process Biochemistry, 2004, 39(5): 637-646.
[42] AGUIERA Y, DIAZ M F, JIMENEZ T, et al. Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes[J]. Journal of Agricultural and Food Chemistry, 2013, 61(34): 8 120-8 125.
[43] WU Z Y, SONG L X, FENG S B, et al. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds[J]. Journal of Agricultural and Food Chemistry, 2012, 60(35): 8 606-8 615.
[44] LÓPEZ-AMORÓS M L, HERNÁNDEZ T, ESTRELLA I. Effect of germination on legume phenolic compounds and their antioxidant activity[J]. Journal of Food Composition and Analysis, 2006, 19: 277-283.
[45] ZHANG B, DENG Z Y, RAMDATH D D, et al. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase[J]. Food Chemistry, 2015, 172: 862-872.