In order to explore the effects of different pulping processes on the quality of soymilk, the organoleptic, nutritional,physicochemical indexes of soymilk produced by the uncooked process, single pulp & residue co-cooking process, double pulp & residue co-cooking process and the hot water extract process were evaluated. In addition, correlation analysis was carried out for each index. The highest sensory score of soymilk was double pulp and residue co-cooking process, with a score of 87.7. Hot water slurry process score of 87.3 points, ranked second. The soymilk from double pulp residue co-cooking process produces a soybean milk stability coefficient of 94.9%, a protein content of 3.890 g/100 g, a fat content of 1.814 g/100 g, and a total sugar content of 1.267 g/100 g, which has the best stability and highest content nutrients. The particle size of the soymilk obtained by the four pulping processes is mainly distributedbetween0.1 μmand2 μm. The maximum particle size of the soymilk is secondary pulping process which D50 and D[4,3] is 0.500 μm and 0.547 μm respectively, and the particle size of the raw slurry process soymilk is minimum, which is 0.423 μm, 0.454 μm respectively. Correlation analysis indicated that there is a significant positive correlation between protein content and viscosity, soymilk stability, average particle size and sensory score (P<0.01), and the correlation coefficients were 0.968, 0.843, 0.979, 0.975, respectively. Protein content is negatively correlated to sedimentation velocity significantly , the correlation is -0.974. Under the same conditions, the secondary pulping process is more suitable for soymilk processing.
FAN Liu
,
LIU Haiyu
,
ZHAO Liangzhong
,
SHEN Guoxiang
,
DEND Yaxin
,
XIE Chunping
,
WU Jiang
,
MO Xin
. Study on the influence of different pulping processes on the quality of soymilk[J]. Food and Fermentation Industries, 2020
, 46(7)
: 148
-154
.
DOI: 10.13995/j.cnki.11-1802/ts.022758
[1] LI Y, GUAN R, LIU Z, et al. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China[J]. Theoretical & Applied Genetics, 2008,117(6):857-871.
[2] QIU L J, CHANG R Z, SINGH G. The origin and history of soybean.[J]. Soybean Botany Production & Uses, 2010:1-23.
[3] 石彦国, 刘琳琳. 大豆蛋白与豆腐品质相关性研究进展[J]. 食品科学技术学报,2018,36(6):1-8.
[4] 王嘉宏. 浅谈大豆营养与大豆产量[J]. 黑龙江科技信息, 2013(11):253.
[5] 大豆的消费现状与营养保健功能[J]. 中国食物与营养, 2001(6):54-55.
[6] 吴彩珍, 傅苏芳, 戴晶晶, 等. 不同制浆工艺豆浆品质分析[J]. 大豆科技, 2014(3):32-35.
[7] 吴月芳. 我国豆浆行业的现状与展望[J]. 农产品加工, 2014(3):32-33.
[8] 韩立德, 盖钧镒, 张文明. 大豆营养成分研究现状[J]. 种子, 2003(5):57-59.
[9] RIVAS M, GARAY R P, ESCANERO J F, et al. Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension[J]. Journal of Nutrition, 2002,132(7):1 900-1 902.
[10] MITCHELL J H, COLLINS A R. Effects of a soy milk supplement on plasma cholesterol levels and oxidative DNA damage in men-a pilot study[J]. European Journal of Nutrition, 1999,38(3):138-143.
[11] 梁晓丽, 许钰麒, 范志红. 豆浆对慢性病的预防与控制作用研究进展[J]. 中国食物与营养, 2010(11):73-76.
[12] 李恒. 香飘千年的传统美食——鲜豆浆[J]. 养生大世界, 2004(10):26-27.
[13] 霍达非. 花生短肽制备功能豆浆工艺的研究[J]. 辽宁农业科学, 2017(2):26-32.
[14] 李景妍, 郭顺堂, 陈洋. 生浆法和熟浆法加工对豆浆香气及相应豆腐产品特征的差异[J]. 大豆科技, 2012(2):36-39;42.
[15] 周娟, 谢灵来, 尹乐斌, 等. 二次浆渣共熟制浆工艺优化研究[J]. 中国酿造, 2018,37(2):194-197.
[16] 陈洋, 林最其, 徐丽, 等. 豆浆制备工艺对豆腐品质的影响[J]. 大豆科学, 2011,30(5):838-842.
[17] 谢灵来. 二次浆渣共熟制浆及豆清发酵液点浆技术研究[D]. 邵阳:邵阳学院, 2017.
[18] 张碧莹, 杨蕊莲, 张静, 等. 不同预处理方式对豆浆品质特性的影响[J]. 食品与发酵工业, 2017,43(2):134-140.
[19] 李娜. 干热预处理制备酶解全豆浆及其稳定性研究[D]. 天津:天津科技大学, 2018.
[20] 闫尊浩. 豆浆制作过程中油体变化规律及其对豆腐性质的影响研究[D]. 无锡:江南大学, 2016.
[21] 王英杰, 陈贝莉, 秦蕾, 等. 粒径分析法研究乳化稳定剂对核桃乳稳定性的影响[J]. 食品工业科技, 2013,34(7):293-297.
[22] 左锋, 赵忠良, 施小迪, 等. 微压煮浆对豆乳蛋白粒子形成与豆乳加工特性的影响[J]. 农业机械学报, 2016,47(1):247-251.
[23] KYOKO T, KYOKO C, TOMOTADA O. Effect of components extracted from okara on the physicochemical properties of soymilk and tofu texture[J]. Journal of Food Science, 2010,72(2):C108-C113.
[24] 陈聪, 赵建新, 范大明, 等. 熟浆工艺豆浆煮浆和分离环节的研究[J]. 食品工业科技, 2012,33(19):259-262.