In order to explore the storage stability and sustained-release properties of chia seed oil microcapsules, this study used caseinate and D-lactose-hydrate to embed chia seed oil to form microcapsules. Oxidation kinetics and predicted product shelf life were explored by measuring the peroxide value of chia seed oil microcapsules during the storage period (65 days). It was found that under room temperature (25 ℃), the shelf life of chia seed oil microcapsules was 219 days, while the shelf life of chia seed oil was 105 days. By measuring the core material retention rate of microencapsulated products under different environmental conditions (temperature, humidity and pH), Avrami 's formula was used to fit and clarify the release types under different storage conditions. The results showed that high temperature and high humidity environment was not conducive to the retention of the core material, and the suitable conditions for the release of the core material were a strong acid or alkali environment. In vitro, simulated digestion experiments showed that chia seed oil microcapsules gradually increased the release rate of free fatty acids throughout the digestive process, and microcapsule release rate reached 81.73% at 270 min, which indicating that the microcapsule had sustained-release behavior in the simulated digestive tract. At the same time, the release rate of microcapsules in the intestinal fluid was higher resulting in most chia seed oil was released in the intestine, thus, could effectively improve the bioavailability of chia seed oil in the human body.
CHANG Xinyue
,
LUO Wei
,
CHEN Chengli
,
DONG Quan
. Study on storage stability and sustained-release kinetics of chia seedoil microcapsules[J]. Food and Fermentation Industries, 2020
, 46(9)
: 108
-114
.
DOI: 10.13995/j.cnki.11-1802/ts.023136
[1] PARKER J, SCHELLENBERGER A N, ROE A L, et al. Therapeutic perspectives on chia seed and its oil: A review [J]. Planta Medica, 2018, 84(09/10): 606-612.
[2] SILVA C, GARCIA V A S, ZANETTE C M. Chia (Salvia hispanica L.) oil extraction using different organic solvents: oil yield, fatty acids profile and technological analysis of defatted meal [J]. International Food Research Journal, 2016, 23(3): 998-1 004.
[3] ULLAH R, NADEEM M, KHALIQUE A, et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review [J]. Journal of Food Science & Technology, 2016, 53(4): 1 750-1 758.
[4] CONNOR W E. Importance of n-3 fatty acids in health and disease [J]. The American Journal of Clinical Nutrition, 2000, 71(1 Suppl): 171S-175S.
[5] SILVA B P D, ANUNCIA O P C, MATYELKA J C D S, et al. Chemical composition of Brazilian chia seeds grown in different places [J]. Food Chemistry, 2017, 221:1 709-1 716.
[6] WANG Y, LIU W, CHEN X D, et al. Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer [J]. Journal of Food Engineering, 2016, 175:74-84.
[7] 杨小斌, 周爱梅, 王爽, 等. 蓝圆鲹鱼油微胶囊的结构表征与体外消化特性 [J]. 食品科学, 2019, 40(1): 117-122.
[8] 钱列生, 芮汉明. 食品微胶囊技术 [J]. 中山大学学报论丛, 2007, 9: 201-205.
[9] 万良钰,肖玉,赵婕,等.薏米糠油微胶囊的释放动力学研究 [J].食品科技,2018,43(1):192-196.
[10] 刘成祥.牡丹籽油微胶囊的制备及其性质研究 [D]. 无锡:江南大学, 2016.
[11] 刘斯博,田少君,夏克东. 亚麻籽油微胶囊芯材的释放条件及模拟缓释行为研究 [J]. 中国油脂,2016,41(9):31-35.
[12] 代慧慧.芝麻油微胶囊的制备及其应用研究 [D].郑州:河南工业大学,2017.
[13] MUNOZ L A, COBOS A, DIAZ O, et al. Chia seed (Salvia hispanica): An ancient grain and a new functional food [J]. Food Reviews International, 2013, 29(4): 394-408.
[14] XIAO Z, KANG Y, HOU W, et al. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil [J]. International Journal of Biological Macromolecules, 2019, 137:132-138.
[15] 龙门,冯超,李永佳, 等. 缓释型茶树精油-壳聚糖微胶囊的制备、表征及体外释放规律 [J]. 食品科学,2019,40(16):242-248.
[16] 叶贤江, 曾恒, 蔡为荣, 等.双歧杆菌混凝胶微胶囊制备及其胃肠释放特性研究 [J]. 食品工业科技,2019,40(20):146-153.
[17] LI Z, DU X, CUI X, et al. Ultrasonic-assisted fabrication and release kinetics of two model redox-responsive magnetic microcapsules for hydrophobic drug delivery [J]. Ultrasonics Sonochemistry, 2019, 57:223-232.
[18] WANG S, SHI Y, HAN L. Development and evaluation of microencapsulated peony seed oil prepared by spray drying: Oxidative stability and its release behavior during in-vitro digestion [J]. Journal of Food Engineering, 2018,231:1-9.
[19] KARACA A C, NICKERSON M, LOW N H. Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil [J]. Food Chemistry, 2013,139(1-4): 448-457.