The moisture content in solid fermentation is a key factor for different fermentation stages of Daqu. In order to detect the moisture content and distribution in the fermentation process rapidly and quantitatively, the hyperspectral imaging technology was applied and the back propagation neural network(BPNN) data model was established. According to the hyperspectral data of Daqu fermentation, principle component analysis (PCA) and experimental methods were firstly used to extract the PC1, PC2, PC3, 1 200 and 1 450nm band images corresponding to the water characteristic spectrum during Daqu fermentation, the GLCM algorithm was then used to extract the water texture features, PLSR, BPNN and SVR were finally used to model and predict the water content of Daqu fermentation according to the extracted image texture features, and then select the best prediction model. The results showed that the effect of BPNN and 1 450 nm spectral image texture features on water content modeling and prediction was the best. The training set determination coefficient (R2) and root mean square error (RMSE) were 0.826 9 and 0.033 5, respectively. The prediction set R2 and RMSE were 0.848 4 and 0.028 7, respectively. The results show that the texture information of hyperspectral characteristic spectrum can be used to predict the water content, which provides a theoretical basis for the detection of water content in Daqu fermentation process.
YE Jianqiu
,
HUANG Danping
,
TIAN Jianping
,
HUANG Dan
,
LUO Huibo
,
WANG Xin
,
ZHANG Li
. Detection of water content in Daqu during fermentation usinghyperspectral image technology[J]. Food and Fermentation Industries, 2020
, 46(9)
: 250
-254
.
DOI: 10.13995/j.cnki.11-1802/ts.023368
[1] 程劲松, 李春扬. 白酒质量控制技术的研究进展[J]. 食品安全质量检测学报, 2014, 5(7): 2 248-2 262.
[2] 蒋玉石, 骆婕茹, 赵丽娟. 新常态下的中国白酒行业发展趋势及应对策略研究[J]. 四川理工学院学报(社会科学版), 2015, 30(6): 46-55.
[3] 敖宗华, 陕小虎, 沈才洪, 等. 国内主要大曲相关标准及研究进展[J]. 酿酒科技, 2010(2): 104-108.
[4] 吴翠芳, 刘国英, 何宏魁. 探索新时代白酒可持续发展的途径[J]. 酿酒, 2018, 45(3): 10-12.
[5] 沈怡方. 白酒生产技术全书[M].北京: 中国轻工业出版社, 1998:45-79.
[6] 张芯豪, 黄丹平, 田建平, 等. 基于机器视觉的大曲质量检测系统研究[J]. 食品与机械, 2018, 34(4): 80-84.
[7] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5): 689-707.
[8] 刘燕德, 张光伟. 高光谱成像技术在农产品检测中的应用[J]. 食品与机械, 2012, 28(5): 223-226;242.
[9] 王顺, 黄星奕, 吕日琴, 等. 水果品质无损检测方法研究进展[J]. 食品与发酵工业, 2018, 44(11): 319-324.
[10] 王芹志, 强锋, 何建国, 等. 基于可见-近红外光谱预测灵武长枣脆度及模型优化[J]. 食品与发酵工业, 2017, 43(3): 205-211.
[11] 朱荣光, 段宏伟, 王龙, 等. 不同分集方法对牛肉嫩度高光谱检测模型的比较[J]. 食品与发酵工业, 2016, 42(4): 189-192.
[12] 石吉勇, 吴胜斌, 邹小波, 等. 基于高光谱技术的酸奶中常见致病菌的快速鉴别及计数[J]. 光谱学与光谱分析, 2019, 39(4): 1 186-1 191.
[13] 孙红, 刘宁, 吴莉, 等. 高光谱成像的马铃薯叶片含水率分布可视化[J]. 光谱学与光谱分析, 2019, 39(3): 910-916.
[14] 邹小波, 徐艺伟, 陈武, 等. 高光谱图像技术检测枇杷叶片三萜酸含量及叶面分布[J]. 现代食品科技, 2015, 31(9): 263-267;288.
[15] 谢安国, 康怀彬, 王飞翔, 等. 高光谱成像检测煎制中调理牛肉品质的变化[J]. 食品与机械, 2018, 34(11): 20-23;54.
[16] 张达, 郑玉权. 高光谱遥感的发展与应用[J]. 光学与光电技术, 2013, 11(3): 67-73.
[17] BAIANO A, TERRACONE C, PERI G, et al. Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes[J]. Computers and Electronics in Agriculture, 2012, 87:142-151.
[18] 刘建平, 赵英时, 孙淑玲. 高光谱遥感数据最佳波段选择方法试验研究[J]. 遥感技术与应用, 2001(1): 7-13.
[19] 魏峰. 高光谱遥感数据特征提取与特征选择方法研究[D]. 西安:西北工业大学, 2015.
[20] YAMATERA H, FITZPATRICK B, GORDON G. Near infrared spectra of water and aqueous solutions[J]. Journal of Molecular Spectroscopy, 1964, 14(1-4): 268-278.
[21] INOUE A, KOJIMA K, TANIGUCHI Y, et al. Near-infrared spectra of water and aqueous electrolyte solutions at high pressures[J]. Journal of Solution Chemistry, 1984, 13(11): 811-823.
[22] LIU D, PU H, SUN D-W, et al. Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat[J]. Food Chemistry, 2014, 160:330-337.