Analysis and evaluation of nutritional components of four types ofmarine aquatic roes

  • ZHENG Tingting ,
  • ZHOU Jing ,
  • WENG Xin ,
  • CHEN Lijiao ,
  • CHENG Wenjian ,
  • PANG Jie ,
  • LIANG Peng
Expand
  • 1(College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
    2(Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education,Fuzhou 350002, China)
    3(Key Laboratory of Marine Biotechnology of Fujian Province, Fuzhou 350002, China)

Received date: 2020-03-08

  Online published: 2020-08-04

Abstract

In order to analyze the nutritional composition of different types of marine aquatic roes, the basic nutrient content, fatty acids, amino acids and mineral elements of large yellow croaker, squid, anglerfish, and capelin roes were determined. The results showed that the water content (6.69±0.29) g/100 g of squid roes was the highest, while the water content of large yellow croaker roes (2.23±0.18) g/100 g was the lowest. The raw fat (18.88±0.06) g/100 g and ash content (14.75±0.13) g/100 g of capelin roes were the highest. Squid roes have the highest crude protein content (89.49±0.38) g/100 g, and the crude fat content is low, which is a high-quality low-fat high-protein food resource. The roes have high contents of phosphorus (P), calcium (Ca), zinc (Zn) and iron (Fe). In addition to tryptophan, valine was the first restricted amino acid of all four types of aquatic roes. The ratio of essential amino acids (EAA) to total amino acids (TAA) of the four types of aquatic roes is between 36.9% and 47.6%. All the mentioned roes are rich in EPA and DHA, among which the content of EPA and DHA is between 33.69% and 43.78%. The results suggest that all the aquatic roes are rich in nutrient elements, and have great potential for further development and utilization.

Cite this article

ZHENG Tingting , ZHOU Jing , WENG Xin , CHEN Lijiao , CHENG Wenjian , PANG Jie , LIANG Peng . Analysis and evaluation of nutritional components of four types ofmarine aquatic roes[J]. Food and Fermentation Industries, 2020 , 46(13) : 244 -249 . DOI: 10.13995/j.cnki.11-1802/ts.023891

References

[1] BINSI P K, NAYAK N, SARKAR P C, et al. Conversion of carp roe mass to caviar substitutes: Stabilization with oregano extract[J]. LWT-Food Science and Technology, 2019, 108: 446-445.
[2] G E BLEDSOE, C D BLEDSOE, B RASCO. Caviars and fish roe products[J]. Critical Reviews in Food Science and Nutrition, 2003, 43(3): 317-356.
[3] BRONZI P, ROSENTHAL H. Present and future sturgeon and caviar production and marketing: a global market overview[J]. Journal of Applied Ichthyology, 2014, 30(6): 1 536-1 546.
[4] 王笑涵,姜卉,吴海涛,等. 大黄鱼卵分离蛋白乳液的构筑及其体外消化规律[J/OL]. 食品科学:1-9[2020-03-29].http://kns.cnki.net/kcms/detail/11.2206.TS.20200108.1429.035.html.
[5] 谷德贤,王婷,徐海龙,等. 天津海域鱼类鱼卵、仔稚鱼资源动态研究[J/OL]. 大连海洋大学学报:1-12[2020-03-29].https://doi.org/10.16535/j.cnki.dlhyxb.2 019-150.
[6] 农业部渔政渔业管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 22-26.
[7] CYPRIAN O O, SVEINSDOTTIR K, NGUYEN M V, et al. Influence of lipid content and packaging methods on the quality of dried capelin (Mallotus villosus) during storage[J]. Journal of Food Science and Technology, 2017, 54(2): 293-302.
[8] WANG Q, XUE C H, LI Z J, et al. Phosphatidylcholine levels and their fatty acid compositions in squid egg: a comparison study with pollack roe and sturgeon caviar[J]. Journal of Food Lipids, 2008, 15(2): 222-230.
[9] 何云,汪有先,赵淑静,等. 鮟鱇鱼骨胶原多肽螯合钙的工艺优化[J]. 食品研究与开发, 2018, 39(21):133-138.
[10] 王锡念,徐志善,孙钦军,等. 不同方法提取鮟鱇鱼皮胶原蛋白的比较和分析[J]. 食品研究与开发, 2019,40(10):80-87.
[11] LIANG P, LI R, SUN H, et al. Phospholipids composition and molecular species of large yellow croaker (Pseudosciaena crocea) roe[J]. Food Chemistry, 2018, 245: 806-811.
[12] KHEDR A, ALAHDAL A M. Optimized gas chromatography-mass spectrometric method to profile esterified fatty acids in fish roe and fish oil[J]. Indian Journal of Pharmaceutical Sciences, 2018, 80(4): 628-636.
[13] 张惠君,王兴国,金青哲. 3种海洋鱼油脂肪酸组成及其位置分布[J]. 食品与机械, 2017, 33(9):59-63.
[14] MILLWARD D J, JACKSON A A, PRICE G, et al. Human amino acid and protein requirements: Current dilemmas and uncertainties[J]. Nutrition Research Reviews, 1989, 2(1): 109-132.
[15] 陈鹏飞,王广军,郁二蒙,等. 2种养殖模式条件下佛罗里达鳖不同部位营养成分的比较[J]. 食品科学, 2015, 36(2):96-100.
[16] ULBRICHT T L V, SOUTHGATE D A T. Coronary heart disease: seven dietary factors[J]. The Lancet, 1991, 338(8 773): 985-992.
[17] 马双,郝淑贤,李来好,等.几种鱼卵营养成分对比分析[J].南方水产科学,2019,15(4):113-121.
[18] 代忠波, 丁卓平,刘承初,等. 三种淡水养殖鱼鱼卵的营养价值评价[J]. 营养学报, 2007(1):103-104.
[19] 王福田,赖年悦,程华峰,等. 比较分析三种不同环境下的中华鳖肌肉营养品质及其挥发性风味物质[J]. 食品与发酵工业, 2019, 45(22):253-261.
[20] DA SILVA R F, KITAGAWA A, VÁZQUEZ F J S. Dietary self-selection in fish: a new approach to studying fish nutrition and feeding behavior[J]. Reviews in Fish Biology and Fisheries, 2016, 26(1): 39-51.
[21] 龚立科. 东海近海域四种经济鱼类中矿物元素的分析及元素指纹信息初探[D]. 杭州:浙江工商大学, 2012.
[22] 张开强,韦荣编,宋茹,等. 北太平洋鱿鱼(Todarodes pacificus)内脏自溶液总氨基酸组成质量评价和体外抗氧化性分析[J].食品科学, 2017, 38(1):238-243.
[23] SHI L, HAO G, CHEN J, et al. Nutritional evaluation of Japanese abalone (Haliotis discus hannai Ino) muscle: Mineral content, amino acid profile and protein digestibility[J]. Food Research International, 2020, 129: 108 876.
[24] 高露姣,夏永涛,黄艳青,等. 俄罗斯鲟鱼卵与西伯利亚鲟鱼卵的营养成分比较[J]. 海洋渔业, 2012, 34(1):57-63.
[25] 庄海旗,刘江琴,钟宇,等. 八种天竺鲷科鱼肌肉脂肪酸组成分析[J]. 食品与发酵工业,2020,46(4):266-271.
[26] 王建忠,师希雄,李雪茹,等. 甘南欧拉藏羊脏器脂肪酸与氨基酸测定及营养评价[J]. 食品与发酵工业, 2019, 45(20):256-261.
[27] 王庆玲,王宁,詹萍,等. 禽蛋脂质脂肪酸组成评价及指纹图谱的构建[J]. 中国食品学报, 2017, 17(12):265-271.
Outlines

/