Analysis of dominant microflora associated with the unique flavor of Guizhou Kaili sour soup using Illumina MiSeq sequencing

  • WANG Qiqi ,
  • TIAN Jiexian ,
  • PAN Zongdong ,
  • DU Jing ,
  • XIN Jiankang ,
  • ZHANG Chuanbo
Expand
  • 1(College of Life Sciences, Guizhou Normal University, Guiyang 550025, China)
    2(Guizhou Qian Li Miao Jiang Agricultural Development Limited Company, Kaili 556000, China)
    3(Qiandongnan Prefectural Academy of Agricultural Sciences, Kaili 556000, China)

Received date: 2019-12-13

  Online published: 2020-08-17

Abstract

Guizhou Kaili sour soup, the most representative “sour food” from the Guizhou province, is produced via a traditional anaerobic fermentation technique and can be divided into white and red sour soups. Microorganisms are important driving factors and give these sour soups their unique flavors. The quality and taste of the soup also depend on the types and richness of its microorganisms. Our study aimed to unravel the microbial diversity and community structure of Guizhou Kaili sour soup using Illumina MiSeq sequencing. Firmicutes and Proteobacteria were found to be the dominant bacterial phyla in white sour soup, while Firmicutes, Cyanobacteria, and Proteobacteria were the dominant bacterial phyla in both spicy and tomato red sour soups. Ascomycota was the dominant fungal phylum in all the above-mentioned sour soups. Lactobacillus, Acetobacter, and Gluconacetobacter were the dominant bacterial genera in white sour soup, while Pichia, Candida, an unclassified genus of Ascomycota, and Dipodascus were the dominant fungal genera. Lactobacillus, Pediococcus, and an unclassified genus were the dominant bacterial genera in spicy and tomato red sour soups. Kazachstania, Saccharomyces, Dipodascus, and Pichia were the dominant fungal genera in spicy red sour soup, while Kazachstania and Pichia were dominant in the tomato red sour soup. There were 30 bacterial operational taxonomic units (OTUs) and 89 fungal OTUs in white sour soup, 120 bacterial OTUs and 127 fungal OTUs in spicy red sour soup, and 136 bacterial OTUs and 45 fungal OTUs in tomato red sour soup. These results provide a theoretical basis for the quality, flavor formation, product improvement, and precise control of production for white, spicy red, and tomato red sour soups.

Cite this article

WANG Qiqi , TIAN Jiexian , PAN Zongdong , DU Jing , XIN Jiankang , ZHANG Chuanbo . Analysis of dominant microflora associated with the unique flavor of Guizhou Kaili sour soup using Illumina MiSeq sequencing[J]. Food and Fermentation Industries, 2020 , 46(14) : 40 -47 . DOI: 10.13995/j.cnki.11-1802/ts.023081

References

[1] 曾荣妹,韩琳,黄平. 贵州红酸汤火锅调料的研究进展及工业化进程[J]. 食品与发酵科技, 2014, 50(5): 72-75.
[2] 鲁杨,王楠兰,李贤,等. 凯里红酸汤主要营养和功能成分的分析研究[J]. 食品研究与开发, 2019, 40(7): 163-166.
[3] 田永峰. 贵州苗族发酵型酸汤中功能性乳酸菌的筛选[D].贵阳:贵州大学, 2008.
[4] 郑莎莎,宋煜婷,罗意,等. 凯里白酸汤的优化工艺[J]. 山地农业生物学报, 2016, 35(2): 80-85.
[5] 周文美. 苗家珍味——酸汤[J]. 江苏调味副食品, 2004, 21(4): 27-28.
[6] 张璇. 贵州 “红酸汤” 半成品中微生物区系的研究[D].重庆:西南大学,2011.
[7] 刘昕昕,孟令波,潘明阳,等. 东北设施黑土土壤微生物总DNA提取方法探讨[J]. 生物技术, 2013, 23(2): 45-48.
[8] WALTER J,TANNOCK G W,TILSALA-TIMISJARVI A, et al. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers[J]. Applied and Environmental Microbiology, 2000, 66(1): 297-303.
[9] YU Y, LEE C, KIM J, et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction[J]. Biotechnology and Bioengineering, 2005, 89(6): 670-679.
[10] GARDES M,BRUNS T D. Its primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts[J]. Molecular Ecology, 1993, 2(2): 113-118.
[11] 沈馨,尚雪娇,董蕴,等. 基于MiSeq高通量测序技术对3个孝感凤窝酒曲细菌多样性的评价[J]. 中国微生态学杂志, 2018, 30(5): 525-530;544.
[12] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
[13] 郝明玉. 直投式发酵泡菜与自然发酵泡菜的比较研究[D]. 南昌: 南昌大学, 2013.
[14] FOX P F,WALLACE J M. Formation of flavor compounds in cheese[J]. Advances in Applied Microbiology, 1997, 45: 17-85.
[15] SETTANNI L,MOSCHETTI G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits[J]. Food Microbiology, 2010, 27(6): 691-697.
[16] AGUILAR-TOALÁ E J,SANTIAGO-LÓPEZ L,PERES C M, et al. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains[J]. Journal of Dairy Science, 2017, 100(1): 65-75.
[17] ZAGO M,SCALTRITI E,BONVINI B, et al. Genomic diversity and immunomodulatory activity of Lactobacillus plantarum isolated from dairy products[J]. Beneficial Microbes, 2017, 8(4): 597-604.
[18] 曾骏. 传统四川泡菜发酵过程中酵母菌的动态变化规律及发酵性能研究[D].雅安:四川农业大学, 2013.
[19] 翟磊,程宵宵,苏姣姣,等. 一株食醋污染菌CICC10774的鉴定及其生长代谢特性[J]. 微生物学通报, 2016, 43(7): 1 524-1 531.
[20] MICHELA P,MONICA A,ANTONELLA C, et al. Exploitation of autochthonous tuscan sourdough yeasts as potential starters[J]. International Journal of Food Microbiology, 2019, 302: 59-68.
[21] FENG X M, ERIKSSON A R B, SCHNÜRER J. Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation[J]. International Journal of Food Microbiology, 2005, 104(3): 249-256.
[22] GARRO M S, DE VALDEZ G F, DE GIORI G S. Temperature effect on the biological activity of Bifidobacterium longum CRL 849 and Lactobacillus fermentum CRL 251 in pure and mixed cultures grown in soymilk[J]. Food Microbiology, 2004, 21(5): 511-518.
[23] ZOUMPOPOULOU G, FOLIGNE B, CHRISTODOULOU K, et al. Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models[J]. International Journal of Food Microbiology, 2008, 121(1): 18-26.
[24] FAZELI M R, SHAHVERDI A R, SEDAGHAT B, et al. Sourdough-isolated Lactobacillus fermentum as a potent anti-mould preservative of a traditional Iranian bread[J].European Food Research and Technology, 2004, 218(6): 554-556.
[25] ZENG X Q, PAN D D, ZHOU P D. Functional characteristics of Lactobacillus fermentum F1[J]. Current microbiology, 2011, 62(1): 27-31.
[26] JÄRVENPÄÄ S, TAHVONEN R L, OUWEHAND A C, et al. A probiotic, Lactobacillus fermentum ME-3, has antioxidative capacity in soft cheese spreads with different fats[J]. Journal of dairy science, 2007, 90(7): 3 171-3 177.
[27] 张书光,张云娟,代卫东,等. Viili乳制品中干酪乳杆菌的分离鉴定[J]. 微生物学杂志, 2012, 32(3): 47-52.
[28] TOFALO R,PERPETUINI G,SCHIRONE M, et al. Yeast biota associated to naturally fermented table olives from different Italian cultivars[J].International Journal of Food Microbiology, 2013, 161(3): 203-208.
[29] ALVES M,GONÇALVES T,QUINTAS C. Microbial quality and yeast population dynamics in cracked green table olives' fermentations[J]. Food Control, 2012, 23(2): 363-368.
[30] HERNÁNDEZ A,MARTÍN A,ARANDA E, et al. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives[J]. Food Microbiology, 2006, 24(4): 346-351.
[31] ARROYO-LÓPEZ F,QUEROL A,BAUTISTA-GALLEGO J, et al. Role of yeasts in table olive production[J]. International Journal of Food Microbiology, 2008, 128(2): 189-196.
[32] 赵欠,王巧碧,周才琼. 酿酒酵母相关营养功能成分的研究及应用进展[J]. 中国酿造, 2015, 34(6): 15-18.
[33] JOHNSON B S,SINGH N K,CHERRY J H, et al. Purification and characterization of glutamate decarboxylase from cowpea[J]. Phytochemistry, 1997, 46(1): 39-44.
[34] PARK J Y,JEONG S,KIM J H. Characterization of a glutamate decarboxylase (GAD) gene from Lactobacillus zymae[J]. Biotechnology Letters, 2014, 36(9): 1 791-1 799.
Outlines

/