Study on extraction and purification of guava polyphenols and its antibacterial activity

  • ZHOU Nong ,
  • MO Rijian ,
  • HUANG Qiuyan ,
  • LI Chengyong
Expand
  • 1(College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China)
    2(Shenzhen Institute, Guangdong Ocean University, Shenzhen 518100, China)
    3(School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China)

Received date: 2020-03-06

  Online published: 2020-08-17

Abstract

Ultrasonic-assisted technology was used to extract polyphenols from guava fruits. The extraction process was optimized by single factor and response surface experiments. Then the extracted polyphenol was separated and purified by AB-8 macroporous resin and its antibacterial activity was measured. The results showed that the optimal extraction condition for guava polyphenols was using 51% ethanol and 1∶32 (mg∶mL) ratio of material to liquid for the extraction of 60 min at 51 ℃. Under the optimized condition, the yield of guava polyphenols reached 10.31 mg/g. The purity of AB-8 macroporous resin was improved from 1.2% to 33.2%. Guava polyphenols had inhibitory effects on E. coli, Bacillus subtilis and Staphylococcus aureus. Their minimum inhibitory concentrations (MIC) were 3 mg/mL, 1.5 mg/mL and 1.5 mg/mL, respectively. However, they had no effect on Aspergillus niger and Candida.

Cite this article

ZHOU Nong , MO Rijian , HUANG Qiuyan , LI Chengyong . Study on extraction and purification of guava polyphenols and its antibacterial activity[J]. Food and Fermentation Industries, 2020 , 46(14) : 182 -188 . DOI: 10.13995/j.cnki.11-1802/ts.023870

References

[1] 刘建林, 夏明忠, 袁颖. 番石榴的综合利用现状及发展前景[J]. 中国林副特产, 2005(6): 60-62.
[2] ZHANG Z, KONG F, NI H, et al. Structural characterization, α-glucosidase inhibitory and DPPH, scavenging activities of polysaccharides from guava[J]. Carbohydrate Polymers, 2016, 144: 106-114.
[3] ALAMAR P D, ELEM T S CARAMȆS, POPPI R J, et al. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics[J]. Food Research International, 2016, 85: 209-214.
[4] 周浓, 莫日坚, 闫协民, 等. 不同加工工艺对番石榴果粉品质的影响及对其褐变的抑制[J]. 食品与发酵工业, 2019, 45(10): 129-134.
[5] 温靖, 徐玉娟, 肖更生, 等. 番石榴果实的营养价值和药理作用及其加工利用[J]. 农产品加工(学刊), 2009(6): 11-13.
[6] 傅予, 王宏, 张岩, 等. Box-Behnken设计-响应面法优化番石榴叶总黄酮提取工艺及总黄酮对糖尿病小鼠糖耐量的影响研究[J]. 中国药房, 2018, 29(1): 49-53.
[7] 贾桂云, 吴凌志, 羊传慧, 等. 芒果和番石榴的果皮、果肉多酚含量测定及抗氧化性比较分析[J]. 海南师范大学学报(自然科学版), 2018, 31(1): 38-43.
[8] 白丽丽, 周紫梦, 戴华. 番石榴果实中总黄酮的提取及含量测定[J].中国现代中药, 2017, 19(2): 260-262;265.
[9] ALMULAIKY Y, ZEYADI M, SALEH R, et al. Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars[J]. Biocatalysis and Agricultural Biotechnology, 2018, 16: 90-97.
[10] FLORES G, WU S B, NEGRIN A, et al. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits Food Chemistry, 2015, 170: 327-355.
[11] 周佳. 茶多酚在动物生产中的应用及研究进展[J]. 广东饲料, 2019, 28(3): 27-29.
[12] 王峰, 李新明, 李群, 等. 苹果多酚及其活性单体对糖尿病小鼠肾中与糖代谢相关基因表达的影响[J]. 中国医药指南, 2018, 16(17): 1-2.
[13] 董科, 冷云, 何方婷, 等. 植物多酚及其提取方法的研究进展[J]. 食品工业科技, 2019, 40(2): 326-330.
[14] 陈金玉, 曾健, 李春美. 龙眼核多酚提取工艺的正交试验优化及其分离纯化与结构表征[J].食品科学, 2015, 36(16): 31-37.
[15] 曹增梅, 黄和. 大孔树脂纯化番石榴多酚的工艺优化[J]. 食品工业科技, 2013, 34(7): 215-218.
[16] 张帅, 程昊. 百香果壳粗多糖的提取及其抑菌性检测[J]. 中国食品添加剂, 2018(11): 182-187.
[17] 徐金瑞, 侯方丽, 黄建蓉, 等.番石榴叶多酚的提取及其抗氧化作用研究[J]. 食品研究与开发, 2016, 37(23): 38-41;55.
[18] 楠极, 李远志. 响应面法优化番石榴叶多酚的超声提取工艺[J]. 食品工业科技, 2016, 37(22): 300-304.
[19] 张倩茹, 尹蓉, 段泽敏, 等. 5种大孔树脂分离苹果多酚的比较研究[J]. 山西农业科学, 2017, 45(4): 538-543.
[20] 朱宇惠, 张继.沉淀-柱层析法纯化茶多酚及儿茶素含量测定[J]. 食品研究与开发, 2013, 34(7): 110-114.
[21] 颜栋美, 李仁菊. 膜分离和聚酰胺吸附对金花茶多酚的纯化[J]. 食品与机械, 2010, 26(1): 42-43;91.
[22] 严守雷. 莲藕多酚提取分离鉴定及生物活性研究[D]. 武汉: 华中农业大学, 2003.
[23] 孔阳, 马养民, 李彦军, 等. 石榴皮粗提物抗菌活性的研究[J]. 食品科技, 2008, 33(9): 199-201.
[24] 邝高波. 番石榴多酚提取及抗氧化和抑菌活性研究[D]. 湛江: 广东海洋大学, 2014.
[25] 梁清蓉. 番石榴叶中酚类物质的研究[D]. 无锡: 江南大学, 2005.
[26] 费鹏, 赵胜娟, 陈曦, 等. 植物多酚抑菌活性、作用机理及应用研究进展[J]. 食品与机械, 2019, 35(7): 226-230.
[27] 陈琛, 徐尤美, 蔺蓓蓓, 等. 秦岭绿茶茶多酚抑菌活性及其机理研究[J]. 四川农业大学学报, 2019, 37(6): 821-827.
Outlines

/