Quantitative analysis of organic acids and aldehydes in Baijiu via PLSR model

  • JI Xin ,
  • FAN Shuangxi ,
  • LI Yicong ,
  • ZHONG Qiding ,
  • LU Wei ,
  • LI Anjun ,
  • LIU Guoying ,
  • HUANG Yan ,
  • HU Xinhang ,
  • YE Fangping
Expand
  • 1(China National Institute of Food and Fermentation Industries Co., Ltd., Beijing 100015, China)
    2(National Standardization Center of Food and Fermentation Industry, Beijing 100015, China)
    3(Anhui Gujing Gongjiu Co., Ltd., Bozhou 236800, China)

Received date: 2020-03-03

  Online published: 2020-08-17

Abstract

There are many minor components in Baijiu. Due to the severely overlapping signal peaks in 1H NMR spectrum, the specific characteristic components analysis method cannot achieve accurate quantification of organic acids and aldehydes in Baijiu. In order to solve the problem of overlapping signal peaks of Baijiu in 1H NMR spectrum, a partial least squares regression (PLSR) model for quantitative analysis of 6 organic acids (acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, and isovaleric acid) and 3 aldehydes (acetaldehyde, acetal, and isovaleraldehyde) in Baijiu was established using 1H NMR technology as the detection method, combining with PLSR prediction algorithm. The coefficient of determination of the PLSR model for quantitative analysis ranged from 0.93 to 0.99, the standard deviation of prediction (RMSEP) < 0.7, and the range error ratio (RPD)≥3.7. It showed that the model had good fitting effect and high prediction accuracy. Compared the results of NMR PLSR model with those of gas chromatography, the error was within ± 8%, which met the verification requirements of method feasibility comparison analysis. The results showed that the NMR PLSR model for quantitative prediction could be used for the accurate determination of 6 organic acids and 3 aldehydes in Baijiu, which laid the foundation for the application of non-targeted 1H NMR fingerprint technology in the authenticity identification of Baijiu, and provided solutions to the problem that it is difficult to quantify the signal overlap of minor components (esters, carbohydrates, amino acid, etc.) in other foods.

Cite this article

JI Xin , FAN Shuangxi , LI Yicong , ZHONG Qiding , LU Wei , LI Anjun , LIU Guoying , HUANG Yan , HU Xinhang , YE Fangping . Quantitative analysis of organic acids and aldehydes in Baijiu via PLSR model[J]. Food and Fermentation Industries, 2020 , 46(14) : 204 -210 . DOI: 10.13995/j.cnki.11-1802/ts.023839

References

[1] GB/T 15109—2008 白酒工业术语[S].北京:中国标准出版社,2008.
[2] 汤道文,谢玉球,朱法余,等.白酒中的微量成分及与白酒风味技术发展的关系[J].酿酒科技,2010(5):78-81.
[3] 尹波,宋君,林锋,等.当前白酒食品安全热点问题和管理体系研究[J].中国酿造,2018,37(2):207-210.
[4] 胡国栋.气相色谱法在白酒分析中的应用现状与回顾[J].食品与发酵工业,2003,29(10):65-69.
[5] 陈双,徐岩.全二维气相色谱-飞行时间质谱法分析芝麻香型白酒中挥发性组分特征[J].食品与发酵工业,2017,43(7):207-213.
[6] 袁瀚,易彬,沈才萍.应用GC-MS对两种原粮酿造的浓香型白酒挥发性化合物的分析[J].酿酒科技,2014(3):44-46;49.
[7] 吴同,谭超.近红外光谱同时测定白酒中总酯和杂醇油[J].化学研究与应用,2016,28(10):1 460-1 463.
[8] 范文来,龚舒蓓,徐岩.白酒有机酸谱[J].酿酒,2019,46(1):37-42.
[9] JUNGNICKEL J L,FORBES J W.Quantitative measurement of hydrogen types by intergrated nuclear magnetic resonance intensities[J].Analytical Chemistry,1963,35(8):938-942.
[10] RODRIGUES J E,ERNY G L,BARROS A S,et al.Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods[J].Analytica Chimica Acta,2010,674(2):166-175.
[11] MONAKHOVA Y B,KUBALLA T,LEITZ J,et al.Erratum to: NMR spectroscopy as a screening tool to validate nutrition labeling of milk, lactose-free milk, and milk substitutes based on soy and grains[J].Dairy Science & Technology,2012,92(4):415.
[12] MONAKHOVA Y B,SCHUTZ B,SCHÄFER H,et al.Validation studies for multicomponent quantitative NMR analysis: The example of apple fruit juice[J].Accreditation & Quality Assurance,2014,19(1):17-29.
[13] OHMENHAEUSER M,MONAKHOVA Y B,KUBALLA T,et al.Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics[J].Isrn Analytical Chemistry,2013,10(1 155):1-9.
[14] WACHTER H,RISTOW R,PATZ C D,et al.Quantitation of compounds in wine using 1H NMR spectroscopy: Description of the method and collaborative study[J].Journal of Aoac International,2016,99(5):1 295-1 304.
[15] LACHENMEIER D W,FRANK W,HUMPFER E,et al.Quality control of beer using high-resolution nuclear magnetic resonance spectroscopy and multivariate analysis[J].European Food Research and Technology,2005,220(2):215-221.
[16] 吉鑫,樊双喜,杨彤晖,等.核磁共振法测定食品中水苏糖的含量[J].食品与发酵工业,2019,45(19):251-257.
[17] VU T N,LAUKENS K.Getting your peaks in line: A review of alignment methods for NMR spectral data[J].Metabolites,2013,3(2):259-276.
[18] 樊双喜.葡萄酒产地与品种真实性鉴别技术研究[D].北京:中国矿业大学,2018.
[19] TOMASI G,SAVORANI F,ENGELSEN S B,et al.icoshift: An effective tool for the alignment of chromatographic data[J].Journal of Chromatography A,2011,1 218(43):7 832-7 840.
[20] ESSLINGER S,FAUHL HASSEK C,WITTKOWSKI R.Authentication of wine by 1H-NMR spectroscopy: Opportunities and challenges[M].Advances in Wine Research.American Chemical Society,2015:85-108.
[21] YU H Y,NIU X Y,LIN H J,et al.A feasibility study on on-line determination of rice wine composition by Vis-NIR spectroscopy and least-squares support vector machines[J].Food Chemistry,2009,113(1):291-296.
[22] COZZOLINO D,CYNKAR W U,SHAH N, et al.Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality[J].Food Research International,2011,44(7):1 888-1 896.
[23] 齐琛,方秋莲.偏最小二乘建模在R软件中的实现及实证分析[J].数学理论与应用,2013,33(2):103-111.
[24] MONAKHOVA Y B,KUBALLA T,LACHENMEIER D W.Rapid quantification of ethyl carbamate in spirits using NMR spectroscopy and chemometrics[J].ISRN Analytical Chemistry,2012:1-5.DOI:10.5402/2012/989174.
Outlines

/