In order to evaluate the effects of excipients (pueraria starch and lotus root starch) , which account for 24%of frozen blueberry quality, the FPC (free polyphenols content, FPC), BPC (bound polyphenols content, BPC) and in vitro antioxidant ability of vacuum microwave drying blueberry products were measured and analyzed which based on the experimental results of vacuum freeze drying process. The results showed that excipients could effectively improve the drying rate of blueberry products and prevent products caking. Furthermore, by adding pueraria starch and lotus root starch in vacuum microwave processing respectively, the FPC increased by 22.44% and 40.54% but the BPC decreased by 45.10% and 49.51%. After storing in the dark at 4 ℃ or 4 months, the FPC increased and the BPC decreased in all blueberry products mixing with excipients. Moreover, TPC (total polyphenols content, TPC) was significantly higher than that of the blueberry drying products without the addition of excipients (P<0.05). However, the FPC, BPC and TPC of blueberry products dried by vacuum microwave with no addition of excipients all decreased. In vitro antioxidant ability of blueberry products increased significantly after adding lotus root starch (P<0.05), but the effect of pueraria starch was not significant. In conclusion, the excipients of lotus root starch and pueraria starch had good protective effects on polyphenols content and in vitro antioxidant ability of blueberry. They could be applied as protective excipients in vacuum microwave drying process of blueberry and other resources rich in polyphenols.
HU Xiang
,
LI Luoxin
,
LUO Kun
,
FENG Jianguo
,
ZHENG Tao
,
ZENG Yiqiong
,
XIN Jibiao
,
SUN Junyu
,
ZHENG Hui
,
YANG Yong
. Effects of two kinds of starch excipients on polyphenols content and antioxidant ability of vacuum microwave drying blueberry products[J]. Food and Fermentation Industries, 2020
, 46(16)
: 183
-189
.
DOI: 10.13995/j.cnki.11-1802/ts.023979
[1] 盛艳, 吴泽柱. 蓝莓的营养保健功能及其开发利用研究进展[J]. 农产品加工(下), 2017(9): 72-74.
[2] 邵春霖, 孟宪军, 毕金峰, 等. 不同干燥方式对蓝莓品质的影响[J]. 食品与发酵工业, 2013, 39(11): 109-113.
[3] NEMZER B, VARGAS L, XIA X, et al. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods[J]. Food Chemistry, 2018, 262: 242-250.
[4] 程安玮, 解红霞, 齐岩, 等. 干燥方式和温度对草莓果粉性质及多酚含量的影响[J]. 食品工业科技, 2016, 37(19): 132-135.
[5] ZIELINSKA M, MICHALSKA A. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture[J]. Food Chemistry, 2016, 212: 671-680.
[6] LIM K, MA M, DOLAN K D. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products[J]. Journal of Food Science, 2011, 76(7): 156-164.
[7] SALAZAR-GONZÁLEZ C, SAN MARTÍN-GONZÓLEZ M F, PEZ-MALO A, et al. Recent studies related to microwave processing of fluid foods[J]. Food and Bioprocess Technology, 2012, 5(1): 31-46.
[8] 王丽颖, 李福香, 杨雅轩, 等. 多糖与多酚相互作用机制及其对多酚特性的影响研究进展[J]. 食品科学, 2017(11): 283-289.
[9] 卢成瑛, 陈功锡, 卜小英, 等. 湘西葛根淀粉与几种植物淀粉特性比较[J]. 食品科学, 2008, 29(12): 120-123.
[10] 唐小闲, 汤泉, 段振华, 等. 不同干燥方式对莲藕淀粉品质特性的影响[J]. 食品工业科技, 2019, 40(6): 26-30.
[11] 许晓娟. 蓝莓果渣多酚, 膳食纤维的提取工艺及性质研究[D]. 长春:吉林农业大学, 2016: 14-19.
[12] 阎海青. 蓝莓中可萃取多酚与不可萃取多酚对巨噬细胞抗炎作用的研究[D]. 济南:齐鲁工业大学, 2014: 21-37.
[13] 唐柯, 王梓萱, 张伟宏, 等. 不同品种蓝莓酚类物质组成特征及抗氧化能力比较分析[J]. 食品与发酵工业, 2017, 43(8): 103-107.
[14] 林西. 蓝莓果干粉制备工艺和以花青素为主的化学组分研究[D]. 北京:北京林业大学, 2013: 17-18.
[15] PÉREZ-JIMÉNEZ J, DÍAZ-RUBIO M E, SAURA-CALIXTO F. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects[J]. Nutrition Research Reviews, 2013, 26(2): 118-129.
[16] WANG H, GUO X, HU X, et al. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.)[J]. Food Chemistry, 2017, 217: 773-781.
[17] 颜才植, 叶发银, 赵国华. 食品中多酚形态的研究进展[J]. 食品科学,2015,36(15): 275-280.
[18] 万芊. 多酚与玉米淀粉的相互作用及其对淀粉消化和加工特性的影响[D]. 无锡:江南大学, 2018: 13-19.
[19] BORDENAVE N, HAMAKER B R, FERRUZZI M G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods[J]. Food & Function, 2014, 5(1): 18-34.
[20] 李颖畅, 孟宪军, 孙靖靖, 等. 蓝莓花色苷的降血脂和抗氧化作用[J]. 食品与发酵工业, 2008, 34(10): 44-48.
[21] SAKAIDA H, NAGAO K, HIGA K, et al. Effect of vaccinium ashei reade leaves on angiotensin converting enzyme activity in vitro and on systolic blood pressure of spontaneously hypertensive rats in vivo[J]. Bioscience, biotechnology, and biochemistry, 2007, 71(9): 2 335-2 337.
[22] MORAIS C A, DE ROSSO V V, ESTADELLA D, et al. Anthocyanins as inflammatory modulators and the role of the gut microbiota[J]. The Journal of Nutritional Biochemistry, 2016, 33: 1-7.
[23] PÉREZ-JIMÉNEZ J, SAURA-CALIXTO F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications[J]. Food Research International, 2018, 111: 148-152.
[24] 韩彩静. 蓝莓多酚的提取及对巨噬细胞抗炎因子的影响[D]. 长春:吉林农业大学, 2014: 32-36.
[25] 赵慧芳, 吴文龙, 马丽, 等. 基于抗氧化活性分析的蓝莓多酚提取工艺[J]. 食品工业科技, 2015, 36(5): 251-254.
[26] 扶雄, 周惠芳, 李超, 等. 甘蔗不同组织中游离态和结合态酚酸的分布及抗氧化活性[J]. 现代食品科技, 2014, 30(11): 17-22.