Research progress of non-thermal effects of microwave fields on food

  • HU Leiqi ,
  • GUO Changkai ,
  • PAN Zhihai ,
  • LUAN Donglei
Expand
  • 1 Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, Shanghai 201306, China
    2 Department of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China

Received date: 2020-01-14

  Revised date: 2020-03-30

  Online published: 2020-09-17

Abstract

Microwave heating has been widely used in food processing due to its fast heating rate, short heating time as well as high thermal efficiency. In addition to thermal effects, some other phenomena cannot be explained by the temperature change during microwave processing, which is so-called the special or non-thermal effects of microwave. The non-thermal effects of microwave can improve the inactivation efficiency of microorganisms and the functional characteristics of proteins. It can also affect the catalytic activity of enzymes in food. This article summarized the methods which were widely used in the study of microwave non-thermal effects, including same heating rate method, low power microwave radiation method and microwave radiation with same cooling rate method. Based on these multiple methods, the non-thermal effects of microwave in foods were sorted out. This research also provided a theoretical reference for the wide applications on the non-thermal effects of microwave fields in food processing.

Cite this article

HU Leiqi , GUO Changkai , PAN Zhihai , LUAN Donglei . Research progress of non-thermal effects of microwave fields on food[J]. Food and Fermentation Industries, 2020 , 46(16) : 270 -275 . DOI: 10.13995/j.cnki.11-1802/ts.023358

References

[1] TANG J. Unlocking potentials of microwaves for food safety and quality[J]. Journal of Food Science, 2015, 80(8): E1 776-E1 793.
[2] GUO Q, SUN D W, CHENG J H, et al. Microwave processing techniques and their recent applications in the food industry[J]. Trends in Food Science & Technology, 2017, 67: 236-247.
[3] ORSAT V, RAGHAVAN G S V, KRISHNASWAMY K. Microwave Technology For Food Processing: An Overview of Current and Future Applications[M]. 2nd ed.Sawston: Woodhead Publishing, 2017:100-116.
[4] 阎若萍, 王易芬, 涂桂飞, 等. 工业微波灭菌技术在食品加工领域的研究进展[J]. 食品工业科技, 2018, 39(8): 302-308.
[5] 张柔佳, 王易芬, 栾东磊. 微波加工过程中食品温度分布规律及其均匀性研究[J]. 食品与发酵工业, 2018, 44(4): 270-278.
[6] 曾昭文, 郑成, 毛桃嫣, 等. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1):1-14.
[7] 范大明. 微波热效应对米淀粉结构的影响[D]. 无锡:江南大学, 2012.
[8] RIFNA E J, SINGH S K, CHAKRABORTY S, et al. Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances[J]. Food Research International, 2019,126: 108 654.
[9] SHAMIS Y, CROFT R, TAUBE A, et al. Review of the specific effects of microwave radiation on bacterial cells[J]. Applied microbiology and biotechnology, 2012, 96(2): 319-325.
[10] 陈卫, 范大明, 马申嫣, 等. 微波对蛋白质及其衍生物结构和功能的影响[J]. 食品与生物技术学报, 2012,31(3): 232-237.
[11] MUNIR M, NADEEM M, QURESHI T M, et al. Effects of high pressure, microwave and ultrasound processing on proteins and enzyme activity in dairy systems—A review[J]. Innovative Food Science & Emerging Technologies, 2019,57: 102 192.
[12] 郑丽娜, 辛嘉英, 王艳, 等. 微波对酶催化反应的影响及其微波效应的研究进展[J]. 分子催化, 2017, 31(6):567-574.
[13] 马双忱, 姚娟娟, 金鑫, 等. 微波化学中微波的热与非热效应研究进展[J]. 化学通报, 2011,74(1):41-46.
[14] YOUNG D D, NICHOLS J, KELLY R M, et al. Microwave activation of enzymatic catalysis[J]. J Am Chem Soc, 2008, 130(31): 10 048-10 049.
[15] 王晓庆. 微波灭菌机理研究[D].北京:中国农业科学院, 2008.
[16] 肖菲. 微波杀菌对香菇品质影响研究[D].上海:上海交通大学, 2012.
[17] 杭锋. 微波加热对微生物的亚细胞结构影响和死亡规律的研究[D].无锡:江南大学, 2006.
[18] 冯建慧, 曹爱玲, 陈小强, 等. 微波对食品蛋白凝胶性和结构影响研究进展[J]. 食品工业科技, 2017,37(18):317-322.
[19] BOHR H, BOHR J. Microwave-enhanced folding and denaturation of globular proteins[J]. Physical Review E, 2000, 61(4): 4 310-4 314.
[20] 黄卡玛, 刘永清, 唐敬贤, 等. 电磁波对化学反应的非热作用及其在电磁生物非热效应机理研究中的意义[J]. 微波学报, 1996, 12(2):126-132.
[21] 王陆瑶, 孟东, 李璐. “热效应”或“非热效应”-微波加热反应机理探讨[J]. 化学通报, 2013,76(8):698-703.
[22] HERRERO M A, KREMSNER J M, KAPPE C O. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry[J]. The Journal of Organic Chemistry, 2008, 73(1):36-47.
[23] JÁN CVENGROS, TOMA S, MARQUE S, et al. Synthesis of phosphonium salts under microwave activation-Leaving group and phosphine substituents effects[J]. Canadian Journal of Chemistry, 2011, 82(9):1 365-1 371.
[24] LUAN D, TANG J, PEDROW P D, et al. Using mobile metallic temperature sensors in continuous microwave assisted sterilization(MATS) systems[J]. Journal of Food Engineering, 2013, 119(3): 552-560.
[25] LUAN D, TANG J, PEDROW P D, et al. Performance of mobile metallic temperature sensors in high power microwave heating systems[J]. Journal of Food Engineering, 2015, 149:114-122.
[26] 马申嫣, 范大明, 王丽云, 等. 微波加热对马铃薯淀粉颗粒内部水状态及分布的影响[J]. 现代食品科技, 2015,31(5):219-225.
[27] WU Y J,FAN D M,HANG F, et al. Effect of calcium on absorption properties and thermal stability of milk during microwave heating[J]. International Journal of Molecular Sciences, 2018, 19(6): 1 747.
[28] 何雨婷, 郭艳明, 张林玉, 等. 低功率微波处理对香菇采后生理及品质的影响[J]. 食品工业科技, 2016, 37(10): 338-341.
[29] 李明霞, 韩建群, 王琦, 等. 低强度微波处理对猕猴桃细胞壁降解酶活性的影响[J]. 食品与发酵工业, 2015, 41(11): 52-58.
[30] 陈孟雅, 鲁加惠, 张海伟. 低能微波预处理对巨峰葡萄贮藏品质的影响[J]. 食品与机械, 2018, 34(3):137-140.
[31] 范大明, 陈卫, 赵建新, 等. 一种微波非热处理装置与使用该装置的液相体系微波非热处理方法: 中国, CN101285785A[P]. 2008-10-15.
[32] 陈海英, 牟伟勋. 微波杀菌技术在不同形态食品领域的应用分析[J]. 食品工业, 2016,37(10): 255-257.
[33] 沈海亮, 宋平, 杨雅利, 等. 微波杀菌技术在食品工业中的研究进展[J]. 食品工业科技, 2012, 33(13): 361-365.
[34] 蔡建荣, 张银志, 孙秀兰.微波处理对大豆分离蛋白功能特性的影响[J]. 安徽农业科学, 2009, 37(2): 453-454;489.
[35] WANG N, GAO Y Z, WANG P, et al. Effect of microwave modification on mechanical properties and structural characteristics of soy protein isolate and zein blended film[J]. Czech Journal of Food Science, 2016, 34(2): 180-188.
[36] MESSIA M C, FALCO T D, PANFILI G, et al. Rapid determination of collagen in meat-based foods by microwave hydrolysis of proteins and HPAEC-PAD analysis of 4-hydroxyproline[J]. Meat Science,2008, 80(2): 401-409.
[37] TAJCHAKAVIT S, RAMASWAMY H S, FUSTIER P. Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating[J]. Food Research International, 1998, 31(10): 713-722.
[38] SIGUEMOTO É S, GUT J A W, MARTINEZ A, et al. Inactivation kinetics of Escherichia coli O157: H7 and Listeria monocytogenes in apple juice by microwave and conventional thermal processing[J]. Innovative Food Science & Emerging Technologies, 2018, 45: 84-91.
[39] MARÍA BENLLOCH-TINOCO, NURIA MARTÍNEZ-NAVARRETE, RODRIGO D. Impact of temperature on lethality of kiwifruit puree pasteurization by thermal and microwave processing[J]. Food Control, 2014, 35(1): 22-25.
[40] ANAYA I, AGUIRREZABAL A, VENTURA M, et al. Survivability of Salmonella cells in popcorn after microwave oven and conventional cooking[J]. Microbiological Research, 2006, 163(1): 73-79.
[41] CAO J, WANG F, LI X, et al. The influence of microwave sterilization on the ultrastructure, permeability of cell membrane and expression of proteins of Bacillus cereus[J]. Frontiers in Microbiology, 2018, 9: 1 870.
[42] ROUGIER C, PROROT A, CHAZAL P, et al. Thermal and nonthermal effects of discontinuous microwave exposure (2.45 Gigahertz) on the cell membrane of Escherichia coli[J]. Applied & Environmental Microbiology, 2014, 80(16): 4 832-4 841.
[43] 张雪梅, 蒋雨. 蛋白质结构与食品功能性质的关系研究[J]. 肉类研究, 2009(5): 71-74.
[44] 郝天舒, 王长远. 微波处理对米糠蛋白结构及功能性的影响[J]. 天然产物研究与开发, 2015,27(5): 774-779.
[45] BI W, ZHAO W, LI X, et al. Study on microwave-accelerated casein protein grafted with glucose and β-cyclodextrin to improve the gel properties[J]. International Journal of Food Science & Technology, 2015, 50(6): 1 429-1 435.
[46] JI L, XUE Y, ZHANG T, et al. The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein-polysaccharide gels[J]. Food Hydrocolloids, 2017, 63: 77-84.
[47] 戴美娟. 微波处理对猕猴桃采后成熟与衰老影响的研究[D]. 合肥:安徽农业大学, 2014.
[48] 费莉娟. 低功率微波处理对草莓采后生理生化及品质的影响研究[D].合肥:安徽农业大学, 2014.
[49] MARÍA E LATORRE, BONELLI P R, ROJAS A M, et al. Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality[J]. Journal of Food Engineering, 2012, 109(4): 676-684.
[50] KERMASHA S, BISAKOWSKI B, RAMASWAMY H, et al. Comparison of microwave, conventional and combination heat treatments on wheat germ lipase activity[J]. International Journal of Food Science & Technology, 1993, 28(6): 617-623.
[51] CAO H, FAN D, JIAO X, et al. Intervention of transglutaminase in surimi gel under microwave irradiation[J]. Food Chemistry, 2018, 268: 378-385.
Outlines

/