[1] 于寒松, 隋佳辰, 代佳宇, 等.核酸适配体技术在食品重金属检测中的应用研究进展[J].食品科学, 2015, 36(15):228-233.
YU H S, SUI J C, DAI J Y, et al.Advances in the application of aptamers to detect heavy metals in foods[J].Food Science, 2015, 36(15):228-233.
[2] SHARMA B, SINGH S, SIDDIQI N J.Biomedical implications of heavy metals induced imbalances in redox systems[J].Biomed Resarch Interational, 2015, 2014(1):1-26.
[3] RODOLFO F M, ISABEL R, ISABEL G P, et al.Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry[J].Journal of Food Composition & Analysis, 2015, 38:7-12.
[4] BUA D G, ANNUARIO G, ALBERGAMO A, et al.Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry[J].Food Additives & Contaminants Part B, 2016, 9(3):210-216.
[5] ZHAO J H, YAN X, ZHOU T Y, et al.Multi-throughput dynamic microwave-assisted leaching coupled with inductively coupled plasma atomic emission spectrometry for heavy metal analysis in soil[J].Journal of Analytical Atomic Spectrometry, 2015, 30(9):1 920-1 926.
[6] QIN Y Y, ZHANG Z H, LI L, et al.Inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) analysis of heavy metal content in Indocalamus tesselatus samples[J].Food Chemistry, 2013, 141(3):2 154-2 157.
[7] WANG L Y, PENG X L, FU H J, et al.Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food[J].Biosensors & Bioelectronics, 2020, 147:111 777.
[8] LI M, GOU H L, AL-OGAIDI I, et al.Nanostructured sensors for detection of heavy metals:A review[J].Acs Sustainable Chemistry & Engineering, 2013, 1(7):713-723.
[9] SUI J C, YU H S, DAI J Y, et al.Application of aptamer biosensor technology to detect heavy metal lead in food[J].Journal of Chinese Institute of Food Science & Technology, 2017, 17(8):203-209.
[10] LI J W, FANG X H, TAN W H.Molecular aptamer beacons for real-time protein recognition[J].Biochemical & Biophysical Research Communications, 2002, 292(1):31-40.
[11] YANG Y, LI W, SHEN P, et al.Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array[J].Sensors and Actuators B:Chemical, 2017, 248:351-358.
[12] WU Y G, ZHAN S S, XING H B, et al.Nanoparticles assembled by aptamers and crystal violet for arsenic(III)detection in aqueous solution based on a resonance Rayleigh scattering spectral assay[J].Nanoscale, 2012, 4(21):1-9.
[13] GOUD K, REDDY K, SATYANARAYANA M, et al.A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials[J].Microchimica Acta, 2020, 187(29):1-32.
[14] GUSCHLBAUER W, CHANTOT J, THIELE D.Four-stranded nucleic acid structures 25 years later:From guanosine gels to telomer DNA[J].Journal of Biomolecular Structure & Dynamics, 1990, 8(3):491-511.
[15] SMIRNOV I, SHAFER R H.Lead is unusually effective in sequence-specific folding of DNA[J].Journal of Molecular Biology, 2000, 296(1):1-5.
[16] GUPTA S D, SHELKE S A, LI N S, et al.Spinach RNA aptamer detects lead (II) with high selectivity[J].Chemical Communications, 2015, 51 (43):9 034-9 037.
[17] LIN Z Z, CHEN Y, LI X H, et al.Pb2+ induced DNA conformational switch from hairpin to G-quadruplex:electrochemical detection of Pb2+[J].Analyst, 2011, 136(11):2 367-2 372.
[18] LI F, FENG Y, ZHAO C, et al.Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead[J].Chemical Communications, 2011,47(43):11 909-11 911.
[19] LONG F, ZHU A, WANG H C.Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment[J].Analytica Chimica Acta, 2014, 849:43-49.
[20] LAN L Y, YAO Y, PING J F, et al.Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J].ACS Applied Materials & Interfaces, 2017, 9(28):23 287-23 301.
[21] DAIRAKU T, FURUITA K, SATO H, et al.Direct detection of the mercury-nitrogen bond in the thymine-HgII-thymine base-pair with 199Hg NMR spectroscopy[J].Chemical Communications, 2015, 51(40):8 488-8 491.
[22] TUREL I, KLJUN J.Interactions of metal ions with DNA, its constituents and derivatives, which may be relevant for antcancer research[J].Current Topics in Medicinal Chemistry, 2011, 11(21):2 661-2 687.
[23] HE J L, LIU G G, LI Z W, et al.Studies on the thymine-mercury- thymine base pairing in parallel and anti-parallel DNA duplexes[J].New Journal of Chemistry, 2015, 39(11):8 752-8 762.
[24] MIYAKE Y, TOGASHI H, TASHIRO M, et al.Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes[J].Journal of the American Chemical Society, 2006, 128(7):2 172-2 173.
[25] ONO A, CAO S, TOGASHI H, et al.Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes[J].Chemical Communications, 2008, 44(39):4 825-4 827.
[26] ZHENG Y, YANG C, YANG F, et al.Real-time study of interactions between cytosine-cytosine pairs in DNA oligonucleotides and silver ions using dual polarization interferometry[J].Analytical Chemistry, 2014, 86(8):3 849-3 855.
[27] WU D, WANG Y G, ZHANG Y, et al.Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+[J].Biosensors & Bioelectronics, 2016, 82:9-13.
[28] XI H Y, CUI M J, LI W, et al.Colorimetric detection of Ag+ based on C-Ag+-C binding as a bridge between gold nanoparticles[J].Sensors & Actuators B:Chemical, 2017, 250:641-646.
[29] WU Y G, ZHAN S S, WANG L M, et al.Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles[J].The Analyst, 2014, 139(6):1 550-1 561.
[30] KIM M, UM H J, BANG S B, et al.Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer[J].Environmental Science & Technology, 2009, 43(24):9 335-9 340.
[31] WU Y G, ZHAN S S, WANG F, et al.Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution[J].Chemical Communications, 2012, 48(37):4 459-4 461.
[32] WU Y G, WANG F, ZHAN S S, et al.Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(III)[J].RSC Advances, 2013, 3(48):25 614-25 619.
[33] 郭婷, 林淑凤, 马良, 等.基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J].食品与发酵工业, 2019, 45(5):218-223.
GUO T, LIN S F, MA L, et al.A fluorescent biosensor based on magnetic nanoparticles and aptamer for detecting AFM1 in milk[J].Food and Fermentation Industries, 2019, 45(5):218-223.
[34] XU Y W, ZHANG W, SHI J Y, et al.Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables[J].Food Chemistry, 2020, 322:126 762.
[35] ZHANG Z H, JI H F, SONG Y P, et al.Fe(III)-based metal-organic framework-derived core-shell nanostructure:Sensitive electrochemical platform for high trace determination of heavy metal ions[J].Biosensors & Bioelectronics, 2017, 94:358-364.
[36] MIAO P, LIU L, LI Y, et al.A novel electrochemical method to detect mercury (II) ions[J].Electrochemistry Communications, 2009, 11(10):1 904-1 907.
[37] GU H D, YANG Y Y, CHEN F, et al.Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJ f exonuclease-mediated amplification[J].Chemical Engineering Journal, 2018, 353:305-310.
[38] ZHANG Y Y, ZHANG C, MA R, et al.An ultra-sensitive au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions[J].Materials Science & Engineering C, 2017, 75:175-181.
[39] ENSAFI A A, AKBARIAN F, HEYDARI S E, et al.A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite[J].Biosensors & Bioelectronics, 2018, 122(30):25-31.
[40] SONG X L, FU B C, LAN Y F, et al.Label-free fluorescent aptasensor berberine-based strategy for ultrasensitive detection of Hg2+ ion[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 204:301-307.
[41] SUN C Y, SUN R, CHEN Y Q, et al.Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food[J].Sensors & Actuators B Chemical, 2018, 255(1):775-780.
[42] ZHAO S Q, XIAO Y S, LU J C, et al.A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion[J].Biosensors & Bioelectronics, 2015, 68:225-231.
[43] WU C S, KHAING O, FAN X.Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes[J].Acs Nano, 2010, 4(10):5 897-5 904.
[44] 王嫦嫦, 马良, 刘微, 等.基于先进材料的适配体传感器在真菌毒素快速检测中的研究进展[J].食品科学, 2020, 41(3):305-313.
WANG C C, MA L, LIU W, et al.Advances in aptasensors based on smart materials for rapid detection of mycotoxins[J].Food Science, 2020, 41(3):305-313.
[45] FARZIN L, SHAMSIPUR M, SHEIBANI S.A review:Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals[J].Talanta, 2017, 174(1):619-627.
[46] LAN L Y, YAO Y, PING J F, et al.Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J].ACS Applied Materials & Interfaces, 2017, 9(28):23 287-23 301.
[47] TAGHDISI S M, DANESH N M, LAVAEE P, et al.An aptasensor for selective, sensitive and fast detection of lead(Ⅱ) based on polyethyleneimine and gold nanoparticles[J].Environmental Toxicology and Pharmacology, 2015, 39(3):1 206-1 211.
[48] LI L H, FENG D X, FANG X, et al.Visual sensing of Hg2+ using unmodified Au@Ag core-shell nanoparticles[J].Journal of Nanostructure in Chemistry, 2014, 4:117-120.
[49] ZHANG Z, CHEN C L, ZHAO X S.A simple and sensitive biosensor based on silver enhancement of aptamer-gold nanoparticle aggregation[J].Electroanalysis, 2009, 21(21):1 316-1 320.
[50] CHEN B B, WANG Z B, HU D X, et al.Determination of nanomolar levels of mercury(II) by exploiting the silver stain enhancement of the aggregation of aptamer-functionalized gold nanoparticles[J].Analytical Letters, 2014, 47(5):795-806.
[51] SHARMA B, FRONTIERA R R, HENRY A I, et al.SERS:Materials, applications, and the future[J]. Materials Today,2012, 15(1-2):16-25.
[52] GUO S J, DONG S J.Metal nanomaterial-based self-assembly:Development, electrochemical sensing and SERS applications[J].Journal of Materials Chemistry, 2011, 21(42):16 704-16 716.
[53] DU Y X, LIU R L, LIU B H, et al.Surface-enhanced raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange[J].Analytical Chemistry, 2013, 85(6):3 160-3 165.
[54] LU Y L, ZHONG J, YAO G H, et al.A label-free SERS approach to quantitative and selective detection of mercury (Ⅱ) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles[J].Sensors and Actuators, 2018, 258:365-372.