Improve the production efficiency of Bacillus natto nattokinase by knocking out the γ-PGA synthetic gene

  • HAN Yuxing ,
  • MENG Fanqiang ,
  • ZHOU Libang ,
  • LU Zhaoxin
Expand
  • (College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095,China)

Received date: 2021-04-07

  Revised date: 2021-05-17

  Online published: 2022-02-28

Abstract

Nattokinase is a thrombolytic enzyme produced by Bacillus natto. The polyglutamic acid (γ-PGA) produced during the cultivation of B. natto increases the viscosity of the fermentation broth, which makes the separation and purification of nattokinase difficult. It increases the cost and limits the large-scale production of nattokinase. In this study, the γ-PGA synthetic gene pgsB was knocked out by homologous recombination, to reduce the content of γ-PGA and the viscosity of the fermentation broth, which might improve the efficiency of separation and purification of nattokinase. The result showed that the yield of γ-PGA of pgsB-deleted strain reduced significantly compared to the wild strain. At the 24th hour of fermentation, the yield of γ-PGA of pgsB-deleted strain reduced 57.9%. Besides, there was no significant difference in cell density, indicating that the deletion of pgsB gene reduced the viscosity of the fermentation broth and had no effect on the growth of the bacteria. The recovery rate of nattokinase of the pgsB-deleted strain was increased by 19.2% in the process of purifying nattokinase by ultrafiltration. Therefore, the separation and purification efficiency of nattokinase had been improved after knocking out the pgsB gene, which might provide a new method for the industrial production of nattokinase.

Cite this article

HAN Yuxing , MENG Fanqiang , ZHOU Libang , LU Zhaoxin . Improve the production efficiency of Bacillus natto nattokinase by knocking out the γ-PGA synthetic gene[J]. Food and Fermentation Industries, 2022 , 48(2) : 224 -230 . DOI: 10.13995/j.cnki.11-1802/ts.027580

References

[1] 孙宇婷, 高春艳.微粒在血栓性疾病中的研究进展[J].医学综述, 2021, 27(2):275-279.
SUN Y T, GAO C Y.Research progress of microparticles in thrombotic diseases[J].Medical Recapitulate, 2021, 27(2):275-279.
[2] 倪庆仁, 戴进前, 张迪, 等.血栓预防策略及研究进展[J].实用心脑肺血管病杂志, 2021, 29(1):6-9.
NI Q R, DAI J Q, ZHANG D, et al.Strategy and research progress of thrombosis prevention[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2021, 29(1):6-9.
[3] WENG Y Q, YAO J, SPARKS S, et al.Nattokinase:An oral antithrombotic agent for the prevention of cardiovascular disease[J].International Journal of Molecular Sciences, 2017, 18(3):523.
[4] 彭英云.γ-聚谷氨酸生产,合成机制和抗冷冻性的研究[D].无锡:江南大学, 2015.
PENG Y Y.Bioproduction, synthesis mechanism and cryoprotective studies of poly-γ-glutamic acid[D].Wuxi:Jiangnan University, 2015.
[5] BAJAJ I, SINGHAL R.Poly (glutamic acid)-an emerging biopolymer of commercial interest[J].Bioresource Technology, 2011, 102(10):5 551-5 561.
[6] ZHONG Z.Study progress on poly-γ-glutamate synthetase and synthesis mechanism[J].Biotechnology Bulletin, 2010, 23(2-6):101-106.
[7] ASHIUCHI M, SHIMANOUCHI K,HORIUCHI T, et al.Genetically engineered poly-gamma-glutamate producer from Bacillus subtilis ISW1214[J].Journal of the Agricultural Chemical Society of Japan, 2006, 70(7):1 794-1 797.
[8] ASHIUCHI M, NAWA C, KAMEI T, et al.Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis[J].European Journal of Biochemistry, 2001, 268(20):5 321-5 328.
[9] 郑重, 吴剑光, 邱乐泉, 等.微生物聚谷氨酸(γ-PGA)合成酶及合成机理的研究进展 [J].生物技术通报, 2010(6):52-56.
ZHENG Z, WU J G, QIU L Q, et al.Research progress of microbial polyglutamic(γ-PGA) acid synthase and its synthesis mechanism [J].Biotechnology Bulletin, 2010(6):52-56.
[10] 石峰, 徐志南, 岑沛霖.利用枯草芽孢杆菌制备γ-聚谷氨酸[C].中国资源生物技术与糖工程学术研讨会论文集,山东:山东微生物学会, 2005.
SHI F, XU Z N, CEN P L.Preparation of γ - polyglutamic acid by Bacillus subtilis[C].Proceedings of the Symposium on Resource Biotechnology and Sugar Engineering in China,Shandong:Shandong society of Microbiology, 2005.
[11] 马婕, 王丹, 李强, 等.基因工程大肠杆菌合成γ-聚谷氨酸[J].过程工程学报, 2009, 9(4):791-795.
MA J, WANG D, LI Q, et al.Biosynthesis of poly-γ-glutamate acid by Escherichia coli[J].The Chinese Journal of Process Engineering, 2009, 9(4):791-795.
[12] VETTING M W, DE CARVALHO L P S, YU M, et al.Structure and functions of the GNAT superfamily of acetyltransferases[J].Archives of Biochemistry & Biophysics, 2005, 433(1):212-226.
[13] EVELAND S S, POMPLIANO D L, ANDERSON M S, et al.Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-gamma-glutamate ligases:Identification of a ligase superfamily[J].Biochemistry, 1997, 36(20):6 223-6 229.
[14] URUSHIBATA Y, TOKUYAMA S, TAHARA Y, et al.Characterization of the Bacillus subtilis ywsC Gene, involved in γ-polyglumatic acid prodution[J].Journal of Bacteriology, 2002, 184(2):337-343.
[15] 李瑞芳, 薛雯雯, 黄亮, 等.枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究[J].生物技术通报,2011(5):227-230.
LI R F, XUE W W, HUANG L, et al.Competent preparation and plasmid transformation of of Bacillus subtilis[J].Biotechnology Bulletin, 2011(5):227-230.
[16] 陆雁, 王青艳, 朱绮霞, 等.枯草芽孢杆菌高效转化及其转化子验证方法[J].广西科学院学报, 2012, 28(2):117-119.
LU Y, WANG Q Y, ZHU Q X, et al.Method for enhancing the transformation efficiency in Bacillus subtilis[J].Journal of Guangxi Academy of Sciences, 2012, 28(2):117-119.
[17] 陈景鑫, 刘妍妍, 沙维, 等.超滤法提取纳豆激酶的技术参数优化[J].食品科技, 2010, 35(5):225-229.
CHEN J X, LIU Y Y, SHA W, et al.Study on technology for extracting nattokinase by ultrafiltration[J].Food Science and Technology, 2010, 35(5):225-229.
[18] 宋文超. 高产纳豆激酶菌株筛选和纳豆激酶分离纯化及药效学研究[D].武汉:华中农业大学, 2013.
SONG W C.Screening strains producing high nattokinase activity, separation and purification of nattokinase fibrinolytic effect on thrombotic mice[D].Wuhan:Huazhong Agricultural University, 2013.
[19] 刘柳, 李南薇, 郭勇, 等.亲和层析法分离纯化纳豆激酶[J].食品科学, 2011, 32(16):58-61.
LIU L, LI N W, GUO Y, et al.Affinity chromatographic purification of nattokinase[J].Food Science, 2011, 32 (16):58-61.
[20] 刘俊果, 邢建民, 畅天狮, 等.反胶团萃取分离纯化纳豆激酶[J].科学通报, 2006, 51(2):133-137.
LIU J G, XING J M, CHANG T S, et al.Extraction and purification of nattokinase by reverse micelles[J].Scientific Bulletin, 2006, 51(2):133-137.
[21] 法芸, 张金玲, 赵海杰, 等.纳豆激酶分离纯化和酶活性测定的研究进展 [J].色谱, 2019, 37(3):274-278.
FA Y, ZHANG J L, ZHAO H J, et al.Progress in separation and purification of nattokinase and its enzyme activity determination[J].Chinese Journal of Chromatography, 2019, 37(3):274-278.
[22] 苟金霞, 高栋.纳豆激酶集成化分离技术[J].中国生物工程杂志, 2008, 28(1):119-123.
GOU J X, GAO D.Novel progress in separation and purification technology of nattokinase[J].China Biotechnology, 2008, 28(1):119-123.
[23] MÄDER U, ANTELMANN H, BUDER T, et al.Bacillus subtilis functional genomics:Genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics[J].Molecular Genetics & Genomics Mgg, 2002, 268(4):455-467.
[24] STANLEY N R, LAZAZZERA B A.Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation[J].Molecular Microbiology, 2010, 57(4):24-27.
Outlines

/