[1] XU Y Q, SUN B G, FAN G S, et al.The brewing process and microbial diversity of strong flavour Chinese spirits:A review[J].Journal of the Institute of Brewing, 2017, 123(1):5-12.
[2] 晋湘宜, 蔡开云, 陈萍, 等.中国白酒酿酒微生物研究概述[J].酿酒, 2020, 47(5):16-21.
JIN X Y, CAI K Y, CHEN P, et al.Overview of the research on brewing microorganisms of Chinese liquor[J].Liquor Making, 2020, 47(5):16-21.
[3] 胡玉婕, 朱秀玲, 丁延芹, 等.芽孢杆菌的耐盐促生机制研究进展[J].生物技术通报, 2020, 36(9):64-74.
HU Y J, ZHU X L, DING Y Q, et al.Research progress on salt tolerance and growth-promoting mechanism of Bacillus[J].Biotechnology Bulletin, 2020, 36(9):64-74.
[4] 李长福, 吴影, 周子吕, 等.碳源对凝结芽孢杆菌耐酸特性的影响及其机制研究[J].食品与发酵工业, 2019, 45(24):16-21.
LI C F, WU Y, ZHOU Z L, et al.Effect and mechanisms of carbon sources on acid tolerance of Bacillus coagulans[J].Food and Fermentation Industries, 2019, 45(24):16-21.
[5] 郭辉祥, 余东, 龙远兵, 等.发酵期间多粮浓香型白酒窖内黄水成分的变化趋势[J].中国酿造, 2020, 39(1):82-87.
GUO H X, YU D, LONG Y B, et al.Change trend of Huangshui components in multiple-grains strong-flavor Baijiu fermentation pit during the fermentation period[J].China Brewing, 2020, 39(1):82-87.
[6] XIE J Y, CHENG K, ZHAO D, et al.Bacillus aquiflavi sp.nov., isolated from yellow water of strongly flavored Chinese Baijiu[J].International Journal of Systematic and Evolutionary Microbiology, 2020, 70(5):3 406-3 412.
[7] KANEHISA M, GOTO S.KEGG:Kyoto encyclopedia of genes and genomes[J].Nucleic Acids Research, 2000, 28(1):27-30.
[8] 郭宴君, 樊璐璐, 何永吉, 等.芽孢杆菌菌株TYF-B5-5的产乙醇特性及其全基因组测序分析[J].山西农业科学, 2020, 48(1):35-39;44.
GUO Y J, FAN L L, HE Y J, et al.Ethanol production optimization and whole genome sequencing analysis of Bacillus sp.TYF-B5-5[J].Journal of Shanxi Agricultural Sciences, 2020, 48(1):35-39;44.
[9] 饶冉. 极端环境微生物的适应机理及应用[J].安徽农业科学, 2012, 40(27):13 512-13 515.
RAO R.The adaptive mechanism and application of extremophilic microorganisms[J].Journal of Anhui Agricultural Sciences, 2012, 40(27):13 512-13 515.
[10] 陈星宇, 马信, 孙长龙, 等.嗜盐微生物的研究进展[J].盐科学与化工, 2019, 48(2):1-4.
CHEN X Y, MA X, SUN C L, et al.The research progress of halophilic microorganisms[J].Journal of Salt Science and Chemical Industry, 2019, 48(2):1-4.
[11] MIN S, KIM H G, LEE B, et al.Protein transfer learning improves identification of heat shock protein families[J].PLoS One, 2021, 16(5):e0251865.
[12] 匡素芳, 彭仁.耐有机溶剂微生物的耐受机制、改造策略和应用[J].生物技术, 2017, 27(6):607-612.
KUANG S F, PENG R.Tolerance mechanism, improvement strategy and application of organic-solvent-tolerant microorganisms[J].Biotechnology, 2017, 27(6):607-612.
[13] MIAO Y J, XIONG G T, LI R Y, et al.Transcriptome profiling of Issatchenkia orientalis under ethanol stress[J].AMB Express, 2018, 8(1):39.
[14] 李伟丽, 秦琦, 李良, 等.热休克蛋白对枯草芽孢杆菌抗逆性和乙醇产量的影响[J].安徽农业科学, 2008, 36(21):8 963-8 965.
LI W L, QIN Q, LI L, et al.The study of using hsp in genetic engineered Bacillus subtilis to increase its resistance to adversity and its production of ethanol[J].Journal of Anhui Agricultural Sciences, 2008, 36(21):8 963-8 965.
[15] 鞠建松, 马宁, 赵冉冉, 等.假坚强芽胞杆菌中乙醇降解相关酶的克隆、表达及酶学特性[J].微生物学报, 2013, 53(4):363-371.
JU J S, MA N, ZHAO R R, et al.Cloning, expression and characterization of alcohol dehydrogenase and aldehyde dehydrogenase from Bacillus pseudofirmus OF4[J].Acta Microbiologica Sinica, 2013, 53(4):363-371.
[16] 何迎粉, 何荣荣, 刘敦华, 等.海藻糖与酿酒酵母乙醇耐受性相关性的研究进展[J].中国酿造, 2020, 39(11):1-4.
HE Y F, HE R R, LIU D H, et al.Correlation between trehalose and ethanol tolerance in Saccharomyces cerevisiae[J].China Brewing, 2020, 39(11):1-4.
[17] PEREIRA M D, ELEUTHERIO E C, PANEK A D.Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae[J].BMC Microbiology, 2001, 1:11.
[18] SEKINE T, KAWAGUCHI A, HAMANO Y, et al.Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance[J].Applied and Environmental Microbiology, 2007, 73(12):4 011-4 019.
[19] HIRASAWA T, YOSHIKAWA K, NAKAKURA Y, et al.Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis[J].Journal of Biotechnology, 2007, 131(1):34-44.
[20] OKOCHI M, KURIMOTO M, SHIMIZU K, et al.Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli[J].Applied Microbiology and Biotechnology, 2007, 73(6):1 394-1 399.
[21] AONO R.Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes[J].Extremophiles:Life Under Extreme Conditions, 1998, 2(3):239-248.
[22] RAMOS J L, DUQUE E, GALLEGOS M T, et al.Mechanisms of solvent tolerance in Gram-negative bacteria[J].Annual Review of Microbiology, 2002, 56(1):743-768.