Stress resistance potential mining of Bacillus aquiflavi 3H-10 and the mechanism of its ethanol tolerance

  • CHENG Kun ,
  • LIU Rui ,
  • ZHENG Jia ,
  • ZHAI Lei ,
  • YAO Su
Expand
  • 1(China National Research Institute of Food and Fermentation Industries Co.Ltd., China Center of Industrial Culture Collection, Beijing 100015, China)
    2(Wuliangye Yibin Co.Ltd., Yibin 644000, China)

Received date: 2021-10-16

  Revised date: 2021-11-03

  Online published: 2022-06-23

Abstract

Bacillus aquiflavi 3H-10, is a novel strain isolated from yellow water of strong-flavor Baijiu in Yibin, Sichuan province, China. It showed good protease-producing activity with low safety risks as a potential strain in Baijiu fermentation. In order to explore the stress resistance potential of the strain B. aquiflavi 3H-10, the tolerance to ethanol, acid, alkali, NaCl and temperature and the mechanism of stress resistance was analyzed. The results showed that the strain 3H-10 was tolerant to 4% ethanol, which might resulted from adaptive evolution in environments. Genetic analysis demonstrated that there were multiple heat shock protein-encoding genes in the genome of strain 3H-10, which allowed stress responses to ethanol and weaken the toxic effect of ethanol on cells. Furthermore, the strain 3H-10 harbored genes responsible for a complete ethanol metabolic pathway, which can enable ethanol oxidization to acetaldehyde and acetic acid. Acetic acid enters the citric acid cycle and finally transforms to CO2 and water. Therefore, abundant heat shock proteins and the complete ethanol metabolic pathway were primary reasons for ethanol tolerance in strain 3H-10. This study provides theoretical basis for the practical application of B. aquiflavi 3H-10 in the fermentation of strong-flavor Baijiu.

Cite this article

CHENG Kun , LIU Rui , ZHENG Jia , ZHAI Lei , YAO Su . Stress resistance potential mining of Bacillus aquiflavi 3H-10 and the mechanism of its ethanol tolerance[J]. Food and Fermentation Industries, 2022 , 48(11) : 24 -29 . DOI: 10.13995/j.cnki.11-1802/ts.029692

References

[1] XU Y Q, SUN B G, FAN G S, et al.The brewing process and microbial diversity of strong flavour Chinese spirits:A review[J].Journal of the Institute of Brewing, 2017, 123(1):5-12.
[2] 晋湘宜, 蔡开云, 陈萍, 等.中国白酒酿酒微生物研究概述[J].酿酒, 2020, 47(5):16-21.
JIN X Y, CAI K Y, CHEN P, et al.Overview of the research on brewing microorganisms of Chinese liquor[J].Liquor Making, 2020, 47(5):16-21.
[3] 胡玉婕, 朱秀玲, 丁延芹, 等.芽孢杆菌的耐盐促生机制研究进展[J].生物技术通报, 2020, 36(9):64-74.
HU Y J, ZHU X L, DING Y Q, et al.Research progress on salt tolerance and growth-promoting mechanism of Bacillus[J].Biotechnology Bulletin, 2020, 36(9):64-74.
[4] 李长福, 吴影, 周子吕, 等.碳源对凝结芽孢杆菌耐酸特性的影响及其机制研究[J].食品与发酵工业, 2019, 45(24):16-21.
LI C F, WU Y, ZHOU Z L, et al.Effect and mechanisms of carbon sources on acid tolerance of Bacillus coagulans[J].Food and Fermentation Industries, 2019, 45(24):16-21.
[5] 郭辉祥, 余东, 龙远兵, 等.发酵期间多粮浓香型白酒窖内黄水成分的变化趋势[J].中国酿造, 2020, 39(1):82-87.
GUO H X, YU D, LONG Y B, et al.Change trend of Huangshui components in multiple-grains strong-flavor Baijiu fermentation pit during the fermentation period[J].China Brewing, 2020, 39(1):82-87.
[6] XIE J Y, CHENG K, ZHAO D, et al.Bacillus aquiflavi sp.nov., isolated from yellow water of strongly flavored Chinese Baijiu[J].International Journal of Systematic and Evolutionary Microbiology, 2020, 70(5):3 406-3 412.
[7] KANEHISA M, GOTO S.KEGG:Kyoto encyclopedia of genes and genomes[J].Nucleic Acids Research, 2000, 28(1):27-30.
[8] 郭宴君, 樊璐璐, 何永吉, 等.芽孢杆菌菌株TYF-B5-5的产乙醇特性及其全基因组测序分析[J].山西农业科学, 2020, 48(1):35-39;44.
GUO Y J, FAN L L, HE Y J, et al.Ethanol production optimization and whole genome sequencing analysis of Bacillus sp.TYF-B5-5[J].Journal of Shanxi Agricultural Sciences, 2020, 48(1):35-39;44.
[9] 饶冉. 极端环境微生物的适应机理及应用[J].安徽农业科学, 2012, 40(27):13 512-13 515.
RAO R.The adaptive mechanism and application of extremophilic microorganisms[J].Journal of Anhui Agricultural Sciences, 2012, 40(27):13 512-13 515.
[10] 陈星宇, 马信, 孙长龙, 等.嗜盐微生物的研究进展[J].盐科学与化工, 2019, 48(2):1-4.
CHEN X Y, MA X, SUN C L, et al.The research progress of halophilic microorganisms[J].Journal of Salt Science and Chemical Industry, 2019, 48(2):1-4.
[11] MIN S, KIM H G, LEE B, et al.Protein transfer learning improves identification of heat shock protein families[J].PLoS One, 2021, 16(5):e0251865.
[12] 匡素芳, 彭仁.耐有机溶剂微生物的耐受机制、改造策略和应用[J].生物技术, 2017, 27(6):607-612.
KUANG S F, PENG R.Tolerance mechanism, improvement strategy and application of organic-solvent-tolerant microorganisms[J].Biotechnology, 2017, 27(6):607-612.
[13] MIAO Y J, XIONG G T, LI R Y, et al.Transcriptome profiling of Issatchenkia orientalis under ethanol stress[J].AMB Express, 2018, 8(1):39.
[14] 李伟丽, 秦琦, 李良, 等.热休克蛋白对枯草芽孢杆菌抗逆性和乙醇产量的影响[J].安徽农业科学, 2008, 36(21):8 963-8 965.
LI W L, QIN Q, LI L, et al.The study of using hsp in genetic engineered Bacillus subtilis to increase its resistance to adversity and its production of ethanol[J].Journal of Anhui Agricultural Sciences, 2008, 36(21):8 963-8 965.
[15] 鞠建松, 马宁, 赵冉冉, 等.假坚强芽胞杆菌中乙醇降解相关酶的克隆、表达及酶学特性[J].微生物学报, 2013, 53(4):363-371.
JU J S, MA N, ZHAO R R, et al.Cloning, expression and characterization of alcohol dehydrogenase and aldehyde dehydrogenase from Bacillus pseudofirmus OF4[J].Acta Microbiologica Sinica, 2013, 53(4):363-371.
[16] 何迎粉, 何荣荣, 刘敦华, 等.海藻糖与酿酒酵母乙醇耐受性相关性的研究进展[J].中国酿造, 2020, 39(11):1-4.
HE Y F, HE R R, LIU D H, et al.Correlation between trehalose and ethanol tolerance in Saccharomyces cerevisiae[J].China Brewing, 2020, 39(11):1-4.
[17] PEREIRA M D, ELEUTHERIO E C, PANEK A D.Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae[J].BMC Microbiology, 2001, 1:11.
[18] SEKINE T, KAWAGUCHI A, HAMANO Y, et al.Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance[J].Applied and Environmental Microbiology, 2007, 73(12):4 011-4 019.
[19] HIRASAWA T, YOSHIKAWA K, NAKAKURA Y, et al.Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis[J].Journal of Biotechnology, 2007, 131(1):34-44.
[20] OKOCHI M, KURIMOTO M, SHIMIZU K, et al.Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli[J].Applied Microbiology and Biotechnology, 2007, 73(6):1 394-1 399.
[21] AONO R.Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes[J].Extremophiles:Life Under Extreme Conditions, 1998, 2(3):239-248.
[22] RAMOS J L, DUQUE E, GALLEGOS M T, et al.Mechanisms of solvent tolerance in Gram-negative bacteria[J].Annual Review of Microbiology, 2002, 56(1):743-768.
Outlines

/