Xanthan gum is a widely used microbial polysaccharide. The surfactant stress was used to induce domesticated strain Xanthomonas campestris to produce novel xanthan gum with glycerol, and the structural characteristics and rheological properties of the novel xanthan gum were determined. A laboratory-preserved strain Xanthomonas campestris CCTCC M2015714, which can produce xanthan gum by fermentation using glycerol as the sole substrate, was domesticated under the stress of high surfactant concentration. Finally, a mutant strain with high tolerance to Tween-80 and Triton X-100 was obtained. The novel xanthan gum with high transparency and low viscosity was stably obtained by 96-120 h of fermentation with the addition of 12 g/L surfactant. The structural and rheological properties of the novel xanthan gum were analyzed by infrared spectroscopy, scanning electron microscopy, viscosity, shear rate and thermal stability. The result of infrared spectra showed that the novel xanthan gum was consistent with the common food grade xanthan gum, and it had a loose and slim porous structure under scanning electron microscopy. The novel xanthan gum had stable rheological properties, low viscosity pseudoplastic fluid properties, and good salt, pH and thermal stability resistance. The study provides a research basis for the application of xanthan gum in functional food and medicine.
[1] ROSALAM S, ENGLAND R.Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp[J].Enzyme & Microbial Technology, 2006, 39(2):197-207.
[2] WANG Z C, WU J R, ZHU L, et al.Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol[J].Bioresource Technology, 2016, 211:390-397.
[3] RIAZ T, IQBAL M W, JIANG B, et al.A review of the enzymatic, physical, and chemical modification techniques of xanthan gum[J].International Journal of Biological Macromolecules, 2021, 186:472-489.
[4] KUMAR A, RAO K M, HAN S S.Application of xanthan gum as polysaccharide in tissue engineering:A review[J].Carbohydrate Polymers, 2018, 180:128-144.
[5] ZHONG C H, WANG H H, ZHANG L Z, et al.Flotation separation of molybdenite and talc by xanthan gum[J].Powder Technology, 2021, 388:158-165.
[6] SU L, JI W K, LAN W Z, et al.Chemical modification of xanthan gum to increase dissolution rate[J].Carbohydrate Polymers, 2003, 53(4):497-499.
[7] SINGH A, VAN HAMME J D, WARD O P.Surfactants in microbiology and biotechnology:Part 2.application aspects[J].Biotechnology Advances, 2007, 25(1):99-121.
[8] 陈慧卿. 氧杂全氟烷基聚乙二醇系氟碳表面活性剂的合成及性能研究[D].上海:上海交通大学, 2009.
CHEN H Q.Study on synthesis and properties of oxa-perfluoroalkyl end-capped peg-based fluorocarbon surfactants[D].Shanghai Jiao Tong University, 2009.
[9] LI H, XU H, LI S, et al.Optimization of exopolysaccharide welan gum production by Alcaligenes sp.CGMCC2428 with Tween-40 using response surface methodology[J].Carbohydrate Polymers, 2012, 87(2):1 363-1 368.
[10] AROCKIASAMY S, BANIK R M.Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design[J].Journal of Bioscience and Bioengineering, 2008, 105(3):204-210.
[11] SILVA C C, DEKKER R F H, SILVA R S S F, et al.Effect of soybean oil and Tween 80 on the production of botryosphaeran by Botryosphaeria rhodina MAMB-05[J].Process Biochemistry, 2007, 42(8):1 254-1 258.
[12] SHENG L, TANG G Y, SU P, et al.Understanding the influence of Tween 80 on pullulan fermentation by Aureobasidium pullulans CGMCC1234[J].Carbohydrate Polymers, 2016, 136:1 332-1 337.
[13] AROCKIASAMY S, BANIK R M.Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design[J].Journal of Bioscience and Bioengineering, 2008, 105(3):204-210.
[14] GHASHGHAEI T, SOUDI M R, HOSEINKHANI S, et al.Effects of nonionic surfactants on xanthan gum production:A survey on cellular interactions[J].Iranian Journal of Biotechnology, 2018, 16(1):1 483.
[15] 王子朝, 朱莉, 吴剑荣, 等.以甘油为底物发酵生产新型黄原胶[J].食品与生物技术学报, 2018, 37(10):1 028-1 034.
WANG Z C, ZHU L, WU J R, et al.Production of a new xanthan gum with glycerol as substrate[J].Journal of Food Science and Biotechnology.2018, 37(10):1 028-1 034.
[16] 王如月, 余讯, 徐静静, 等.燕麦β-葡聚糖及其寡糖对肠道菌群结构和代谢的影响[J].食品与发酵工业, 2020, 46(11):85-91;97.
WANG R Y, YU X, XU J J, et al.Effects of oat β-glucan and its oligosaccharides on composition and metabolism of intestinal microorganisms[J].Food and Fermentation Industries, 2020, 46(11):85-91;97.
[17] KUAN Y H, NAFCHI A M, HUDA N, et al.Effects of sugars on the gelation kinetics and texture of duck feet gelatin[J].Food Hydrocolloids, 2016, 58(2):267-275.
[18] 王子朝, 吴剑荣, 朱莉, 等.Xanthomonas campestris CCTCC M2015714以甘油为底物发酵产黄原胶的性质分析[J].生物学杂志, 2017, 34(5):15-19.
WANG Z C, WU J R, ZHU L, et al.Characterization of xanthan gum produced from glycerol by Xanthomonas campestris CCTCC M2015714[J].Journal of Biology, 2017, 34(5):15-19.
[19] PORTERFIELD J Z, ZLOTNICK A.A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance[J].Virology, 2010, 407(2):281-288.
[20] ROSALAM S, ENGLAND R.Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp.[J].Enzyme and Microbial Technology, 2006, 39(2):197-207.
[21] DONOT F, FONTANA A, BACCOU J C, et al.Microbial exopolysaccharides:Main examples of synthesis, excretion, genetics and extraction[J].Carbohydrate Polymers, 2012, 87(2):951-962.
[22] HAMCERENCU M, DESBRIERES J, POPA M, et al.New unsaturated derivatives of xanthan gum:Synthesis and characterization[J].Polymer, 2007, 48(7):1 921-1 929.
[23] 彭曼曼, 吴思凝, 迪珂君, 等.超声处理对魔芋葡甘聚糖流变与结构的影响[J].食品与发酵工业, 2020, 46(3):152-159.
PENG M M, WU S N, DI K J, et al.Effect of ultrasonic treatment on the rheology and structure of konjac glucomannan[J].Food and Fermentation Industries, 2020, 46(3):152-159.
[24] CLARKE-STURMAN A J, PEDLEY J B, STURLA P L.Influence of anions on the properties of microbial polysaccharides in solution[J].International Journal of Biological Macromolecules, 1986, 8(6):355-360.
[25] 吴琴, 陶瑞霄, 迟原龙, 等.银耳粗多糖的理化特性研究[J].食品科技, 2016, 41(12):149-153.
WU Q, TAO R X, CHI Y L, et al. Physicochemical properties of crude polysaccharides from Tremella fucitormis[J].Food Science and Technology, 2016, 41(12):149-153.