Tracing the origin of Red Fuji apple based on variable optimization and near-infrared spectroscopy

  • 张立欣 ,
  • 杨翠芳 ,
  • 陈杰 ,
  • 张晓果 ,
  • 张楠楠 ,
  • 张晓
Expand
  • 1(College of Information Engineering, Tarim University, Alar Xinjiang Uygur Autonomous Region, Alaer 843300, China)
    2(School of Science, Nanjing University of Science and Technology, Nanjing 210094, China)
    3(School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467036, China)

Received date: 2020-11-06

  Revised date: 2021-12-17

  Online published: 2022-11-18

Abstract

Near-infrared spectrum data of Red Fuji apples from Aksu, Jingning, Lingbao, and Yantai were collected to trace the origin of Red Fuji apples. Nine methods including normalization (NOR), centralization (CEN), first derivative (1-DER), second derivative (2-DER), standard normal transform (SNV), multivariate scattering correction (MSC), wavelet transform (WT), SG smoothing transform (SG), and Fourier transform (FT) were used to preprocess the original spectrum. Results showed that the model after multivariate scattering correction pretreatment had the highest recognition rate of 97.5%, and the recognition rates of Aksu, Jingning, Lingbao, and Yantai were 100%, 100%, 90%, and 100%, respectively. To simplify the model, principal component analysis (PCA), successive projection algorithm (SPA), competitive adaptive reweighted sampling (CARS), random frog (RF), and their combination algorithms were used to select characteristic variables. Results showed that the total recognition rate of MSC-CARS-SPA-PNN was 98.75%, and the recognition rates of Red Fuji apples from four producing areas were 100%, 100%, 95%, and 100%, respectively, which could provide theoretical reference for the origin discrimination of Red Fuji apples.

Cite this article

张立欣 , 杨翠芳 , 陈杰 , 张晓果 , 张楠楠 , 张晓 . Tracing the origin of Red Fuji apple based on variable optimization and near-infrared spectroscopy[J]. Food and Fermentation Industries, 2022 , 48(20) : 36 -43 . DOI: 10.13995/j.cnki.11-1802/ts.029991

References

[1] 曹晓峰, 任惠如, 李幸芝, 等.高光谱技术结合特征波长/光谱指数对冬枣成熟度可视化判别[J].光谱学与光谱分析, 2018,38(7):2 175-2 182.
CAO X F, REN H R, LI X Z, et al.Discrimination of winter jujube's maturity using hyperspectral technique combined with characteristic wavelength and spectral indices[J].Spectroscopy and Spectral Analysis, 2018,38(7):2 175-2 182.
[2] FANG Y M, YANG F, ZHOU Z, et al.Hyperspectral wavelength selection and integration for bruise detection of Korla pears[J].Journal of Spectroscopy, 2019:6715247.
[3] 曹晓兰, 陈星明, 张帅, 等.高光谱参数和逐步判别的苎麻品种识别[J].光谱学与光谱分析, 2018,38(5):1 547-1 551.
CAO X L, CHEN X M, ZHANG S, et al.Ramie variety identification based on the hyperspectral parameters and the stepwise discriminant analysis[J].Spectroscopy and Spectral Analysis, 2018,38(5):1 547-1 551.
[4] 王磊, 覃鸿, 李静,等.近红外高光谱图像的宁夏枸杞产地鉴别[J].光谱学与光谱分析, 2020,40(4):1 270-1 275.
WANG L, QIN H, LI J, et al.Geographical origin identification of Lycium barbarum using near-infrared hyperspectral imaging[J].Spectroscopy and Spectral Analysis, 2020,40(4):1 270-1 275.
[5] YE R K, CHEN Y Y, GUO Y C, et al.NIR hyperspectral imaging technology combined with multivariate methods to identify shrimp freshness[J].Applied Sciences, 2020, 10(16):5 498.
[6] 邵园园, 王永贤, 玄冠涛, 等.高光谱成像的猕猴桃货架期快速预测[J].光谱学与光谱分析, 2020,40(6):1 940-1 946.
SHAO Y Y, WANG Y X, XUAN G T, et al.Hyperspectral imaging technique for estimating the shelf-life of kiwifruits[J].Spectroscopy and Spectral Analysis, 2020,40(6):1 940-1 946.
[7] 戴松松, 殷勇.基于高光谱信息特征选择的玉米霉变程度Fisher鉴别方法[J].食品与机械, 2018,34(3):68-72.
DAI S S, YIN Y.Fisher discriminant analysis for moldy degrees of maize samples based on the feature selection of hyperspectral data[J].Food & Machinery, 2018,34(3):68-72.
[8] 孙宗保, 王天真, 李君奎, 等.高光谱成像的牛肉丸掺假检测[J].光谱学与光谱分析,2020,40(7):2 208-2 214.
SUN Z B, WANG T Z, LI J K, et al.Detecting adulterated beef meatball using hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis, 2020,40(7):2 208-2 214.
[9] 第五鹏瑶, 卞希慧, 王姿方, 等.光谱预处理方法选择研究[J].光谱学与光谱分析, 2019, 39(9):2 800-2 806.
DIWU P Y, BIAN X H, WANG Z F, et al.Study on the selection of spectral preprocessing methods[J].Spectroscopy and Spectral Analysis, 2019, 39(9):2 800-2 806.
[10] 杨倩圆, 谢定, 郑瑞娜, 等.淀粉液化液葡萄糖当量值的近红外快速检测[J].食品工业科技,2019,40(9):248-252.
YANG Q Y, XIE D, ZHENG R N, et al.Fast detection of starch liquefying solution's dextrose equivalent value by near infrared spectroscopy[J].Science and Technology of Food Industry,2019,40(9):248-252.
[11] 王亚轩, 谭峰,辛元明,等.大米拉曼光谱不同预处理方法的相近产地鉴别研究[J].光谱学与光谱分析, 2021, 41(2):565-571.
WANG Y X, TAN F, XIN Y M, et al.Identification of rice from similar areas with different pretreatment methods of Raman spectrum[J].Spectroscopy and Spectral Analysis, 2021, 41(2):565-571.
[12] DONG J L, GUO W C, WANG Z W, et al.Nondestructive determination of soluble solids content of 'fuji' apples produced in different areas and bagged with different materials during ripening[J].Food Analytical Methods, 2016, 9(5):1 087-1 095.
[13] WANG F, ZHAO C J, YANG G J.Development of a non-destructive method for detection of the juiciness of pear via VIS/NIR spectroscopy combined with chemometric methods[J].Foods(Basel,Switzerland), 2020, 9(12):1 778.
[14] 张娟娟, 席磊, 杨向阳, 等.砂姜黑土有机质含量高光谱估测模型构建[J].农业工程学报, 2020, 36(17):135-141.
ZHANG J J, XI L, YANG X Y, et al.Construction of hyperspectral estimation model for organic matter content in Shajiang black soil[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17):135-141.
[15] 褚小立. 化学计量学方法与分子光谱分析技术[M].北京:化学工业出版社, 2011.
CHU X L.Molecular Spectroscopy Analytical Technology Comblned with Chemometrics and Its Applications[M].Beijing:Chemical Industry Press, 2011.
[16] 何勇, 刘飞, 李晓丽, 等.光谱及成像技术在农业中的应用[M].北京:科学出版社, 2016.
HE Y, LIU F, LI X L, et al.Spectroscopy and Imaging Technology in Agriculture[M].Beijing:Science Press,2016
[17] 张立欣, 杨翠芳, 陈杰, 等.基于变量优选的苹果糖分含量近红外光谱检测[J].食品与机械,2021,37(10):112-118.
ZHANG L X, YANG C F, CHEN J, et al.Detection of sugar content in apple by near infrared spectroscopy based on variable optimization[J].Food & Machinery,2021,37(10):112-118.
[18] 宋相中, 唐果, 张录达, 等.近红外光谱分析中的变量选择算法研究进展[J].光谱学与光谱分析, 2017, 37(4):1 048-1 052.
SONG X Z, TANG G, ZHANG L D, et al.Research advance of variable selection algorithms in near infrared spectroscopy analysis[J].Spectroscopy and Spectral Analysis, 2017, 37(4):1 048-1 052.
[19] LI Y, GUO Y J, LIU C, et al.SPA combined with swarm intelligence optimization algorithms for wavelength variable selection to rapidly discriminate the adulteration of apple juice[J].Food Analytical Methods, 2017, 10(6):1 965-1 971.
[20] WU Y, LI L L, LIU L, et al.Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy[J].Multimedia Tools and Applications, 2019, 78(4):4 179-4 195.
[21] 陈蓓, 郑恩让,郭拓.多种光谱变量筛选算法在红参提取近红外建模中的应用[J].光谱学与光谱分析,2021,41(8):2 443-2 449.
CHEN B, ZHENG E R, GUO T.Application of various algorithms for spectral variable selection in NIRS modeling of red ginseng extraction[J].Spectroscopy and Spectral Analysis, 2021,41(8):2 443-2 449.
[22] 程介虹, 陈争光.改进的联合区间随机蛙跳算法的近红外光谱波长选择[J].光谱学与光谱分析, 2020, 40(11):3 451-3 456.
CHENG J H, CHEN Z G.Wavelength selection of near-infrared spectra based on improved SiPLS-random frog algorithm[J].Spectroscopy and Spectral Analysis, 2020, 40(11):3 451-3 456.
[23] 袁凯, 张志勇, 席前, 等.3步混合变量选择策略在鸡肉近红外水分检测中的应用[J].食品与机械, 2020, 36(9):72-76;81.
YUAN K, ZHANG Z Y, XI Q, et al.Research on the application of three-step hybrid variable selection strategy in chicken moisture detection by near infrared[J].Food & Machinery, 2020, 36(9):72-76;81.
[24] 马永杰, 郭俊先, 郭志明, 等.基于近红外透射光谱及多种数据降维方法的红富士苹果产地溯源[J].现代食品科技,2020,36(6):303-309.
MA Y J,GUO J X, GUO Z M, et al.Origin tracing of red fuji apple based on near infrared transmission spectrum and various dimension reduction methods[J].Modern Food Science & Technology,2020,36(6):303-309.
Outlines

/