Biosynthesis pathway of cordycepin in Cordyceps militaris based on metabonomics

  • LIU Guijun ,
  • QIAO Yuchen ,
  • ZHOU Sijing ,
  • WANG Ping ,
  • SONG Meifang ,
  • YANG Suling ,
  • GU Haike ,
  • HOU Li
Expand
  • (Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China)

Received date: 2022-07-13

  Revised date: 2022-08-18

  Online published: 2023-04-28

Abstract

In this study, the cordycepin biosynthesis pathway was studied by analyzing the metabolome data of Cordyceps militaris strains. The starting strain CM08, the high-yield cordycepin positive mutant strain CM09 and the low-yield cordycepin negative mutant strain CM10 obtained by radiation mutagenesis were studied. The untargeted metabolomics data of CM08, CM09 ,and CM10 were determine by ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS), and multivariate statistical analysis was conducted. The results of principal component analysis showed that there were significant differences among metabolites of CM08, CM09, and CM10. Differential metabolites were distinguished by variable importance for the projection (VIP) obtained by orthogonal partial least squares discrimination analysis model (VIP>1 and P<0.05), and there were 64 differential metabolites ofCM09 vs CM08 and 147 differential metabolites of CM10 vs CM08, including amino acids, saccharides and nucleoside compounds. Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways showed that differential metabolites were significantly enriched in purine metabolic pathway, pentose phosphate pathway and ABC transporter pathway. The relative contents down-regulated and up-regulated of enriched differential metabolites adenosine, ADP-ribose, 2′-deoxyadenosine, adenosine monophosphate (AMP), 3′-AMP and cordycepin were reversed in positive and negative mutant strains, which showed that these differential metabolites were closely related to the yield of cordycepin, Combined with literature reports and the results of this study, the biosynthesis pathway of cordycepin is speculated as follows: ADP-Ribose→Ribose-5-P→PRPP→IMP→Adenylosuccinate→AMP→Adenosine→3′-AMP→2′-C-3′-dA→cordycepin, which provides important basis for the study of cordycepin biosynthesis pathway.

Cite this article

LIU Guijun , QIAO Yuchen , ZHOU Sijing , WANG Ping , SONG Meifang , YANG Suling , GU Haike , HOU Li . Biosynthesis pathway of cordycepin in Cordyceps militaris based on metabonomics[J]. Food and Fermentation Industries, 2023 , 49(7) : 16 -25 . DOI: 10.13995/j.cnki.11-1802/ts.032969

References

[1] 黄年来, 林志彬, 陈国良, 等.中国食药用菌学[M].上海:上海科学技术文献出版社, 2010:1 763.
[2] LIAN T T, YANG T, YANG T, et al.Variations of SSU rDNA group I introns in different isolates of Cordyceps militaris and the loss of an intron during cross-mating[J].Journal of Microbiology, 2014, 52(8):659-666.
[3] 朱丽娜, 刘艳芳, 张红霞, 等.培养基和栽培方式对蛹虫草子实体活性成分的影响[J].菌物学报, 2021, 40(11):3 034-3 045.
ZHU L N, LIU Y F, ZHANG H X, et al.Effects of culture media and culture technique on the bioactive and nutrition components in Cordyceps militaris fruiting bodies[J].Mycosystema, 2021, 40(11):3 034-3 045.
[4] 于悦, 陈卓, 王亚非, 等.蛹虫草胞外多糖的制备、结构分析及其免疫活性[J].食品科学, 2021, 42(23):106-113.
YU Y, CHEN Z, WANG Y F, et al.Preparation, structure and immuneomodulatory activity of exopolysaccharide from Cordyceps militaris[J].Food Science, 2021, 42(23):106-113.
[5] 刘朋肖, 马婕馨, 刘警鞠, 等.优良性状蚕蛹虫草的筛选及高产虫草素液态发酵条件优化[J].菌物学报, 2021, 40(11):3 046-3 057.
LIU P X, MA J X, LIU J J, et al.Screening of Cordyceps militaris with excellent traits and optimization of liquid fermentation conditions for highly yielding cordycepin[J].Mycosystema, 2021, 40(11):3 046-3 057.
[6] 刘桂君, 周思静, 林金星.培养基质对蛹虫草中虫草酸及核苷类物质的影响[J].食品与发酵工业, 2015, 41(5):94-98.
LIU G J, ZHOU S J, LIN J X.Effects of culture medium on cordycepic acid and nucleosides in Cordyceps militaris[J].Food and Fermentation Industries, 2015, 41(5):94-98.
[7] 孙志双, 姜小天, 施溯筠.HPLC法同时测定蛹虫草中虫草素、腺苷和麦角甾醇的含量[J].食品研究与开发, 2020, 41(19):173-176.
SUN Z S, JIANG X T, SHI S Y.Determination of cordycepin, adenosine and ergosterol in Cordyceps militaris by HPLC[J].Food Research and Development, 2020, 41(19):173-176.
[8] 刘宽博, 王芬, 柴一秋, 等.广义虫草类真菌来源的N6-(2-羟乙基)腺苷的研究开发现状与思考[J].菌物学报, 2017, 36(1):6-13.
LIU K B, WANG F, CHAI Y Q, et al.Research and exploitation of N6-(2-hydroxyethyl)-adenosine from Cordyceps s.l.:Progress and problems[J].Mycosystema, 2017, 36(1):6-13.
[9] CUNNINGHAM K G, MANSON W, SPRING F S, et al.Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) link[J].Nature, 1950, 166(4 231):949.
[10] LEE J H, HONG S M, YUN J Y, et al.Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro[J].Journal of Cancer Therapy, 2011, 2(2):224-234.
[11] WEI C L, YAO X J, JIANG Z B, et al.Cordycepin inhibits drug-resistance non-small cell lung cancer progression by activating AMPK signaling pathway[J].Pharmacological Research, 2019, 144:79-89.
[12] LEE D, LEE W Y, JUNG K, et al.The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism:An investigation using network pharmacology-based analysis[J].Biomolecules, 2019, 9(9):414.
[13] CHOU S M, LAI W J, HONG T W, et al.Synergistic property of cordycepin in cultivated Cordyceps militaris-mediated apoptosis in human leukemia cells[J].Phytomedicine, 2014, 21(12):1 516-1 524.
[14] LIAO Y H, LING J Y, ZHANG G Y, et al.Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells[J].Cell Cycle, 2015, 14(5):761-771.
[15] UEDA Y, MORI K, SATOH S, et al.Anti-HCV activity of the Chinese medicinal fungus Cordyceps militaris[J].Biochemical and Biophysical Research Communications, 2014, 447(2):341-345.
[16] CUNNINGHAM K G, HUTCHINSON S A, MANSON W, et al.Cordycepin, a metabolic product from cultures of Cordyceps militaris(Linn.) link.Part I.Isolation and characterisation[J].Journal of the Chemical Society (Resumed), 1951(0):2 299-2 300.
[17] LEI J J, WEI Y L, SONG P C, et al.Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress[J].European Journal of Pharmacology, 2018, 818:110-114.
[18] SHIN Y K, YE M B, KIM S W, et al.3’-Deoxyadenosine inhibits pre-adipocyte differentiation and biosynthesis of triacylglycerol in 3T3-L1 cells[J].Journal of Functional Foods, 2014, 6:331-338.
[19] TSAI Y J, LIN L C, TSAI T H.Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat[J].Journal of Agricultural and Food Chemistry, 2010, 58(8):4 638-4 643.
[20] SCHWENZER H, ZAN E D, ELSHAN M, et al.The novel nucleoside analogue ProTide NUC-7738 overcomes cancer resistance mechanisms in vitro and in a first-in-human phase I clinical trial[J].Clinical Cancer Research, 2021, 27(23):6 500-6 513.
[21] KREDICH N M, GUARINO A J.Studies on the biosynthesis of cordycepin[J].Biochimica et Biophysica Acta, 1961, 47(3):529-534.
[22] SUHADOLNIK R J, CORY J G.Further evidence for the biosynthesis of cordycepin and proof of the structure of 3-deoxyribose[J].Biochimica et Biophysica Acta (BBA)-Specialized Section on Nucleic Acids and Related Subjects, 1964, 91(4):661-662.
[23] LENNON M B, SUHADOLNIK R J.Biosynthesis of 3’-deoxyade-nosine by Cordyceps militaris[J].Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 1976, 425(4):532-536.
[24] ZHENG P, XIA Y L, XIAO G H, et al.Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine[J].Genome Biology, 2011, 12(11):R116.
[25] XIA Y L, LUO F F, SHANG Y F, et al.Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin[J].Cell Chemical Biology, 2017, 24(12):1 479-1 489.
[26] 王升厚, 牛世莉, 徐方旭, 等.基于代谢组学的功能性蛹虫草成分研究[J].微生物学杂志, 2018, 38(2):1-7.
WANG S H, NIU S L, XU F X, et al.Metabolomic analysis for component of functional Cordyceps militaris[J].Journal of Microbiology, 2018, 38(2):1-7.
[27] CHEN L, LIU Y T, GUO Q F, et al.Metabolomic comparison between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris[J].Biomedical Chromatography, 2018:e4279.
[28] 李亚洁, 温志新, 孟楠, 等.柞蚕蛹培养蛹虫草不同时间后的代谢组分析[J].菌物学报, 2021, 40(5):1 023-1 038.
LI Y J, WEN Z X, MENG N, et al.Metabolomic analyses of tussah pupa-cultivated Cordyceps militaris at different growth stages[J].Mycosystema, 2021, 40(5):1 023-1 038.
[29] 蔡昭宁. 不同碳源对蛹虫草液体发酵代谢组的影响及发酵液抑菌能力探究[D].重庆:西南大学, 2016.
CAI Z N.Effects of different carbon sources on metabolome of Cordyceps militaris fermentation and preliminary study on the antibacterial ability of the zymotic fluid[D].Chongqing:Southwest University, 2016.
[30] 秦鹏, 路等学, 赵玉卉, 等.虫草素产量不同的蛹虫草菌株代谢组差异[J].菌物学报, 2021, 40(5):1 039-1 053.
QIN P, LU D X, ZHAO Y H, et al.Differential metabolomic analyses of Cordyceps militaris strains with different capacity for cordycepin production[J].Mycosystema, 2021, 40(5):1 039-1 053.
[31] 何亚琼, 彭凡, 赵铖, 等.人工培养柞蚕蝉花不同部位的代谢组差异[J].微生物学通报, 2021, 48(2):480-492.
HE Y Q, PENG F, ZHAO C, et al.Metabolomic differences among different parts of Isaria cicadae cultured on Antheraea pernyi[J].Microbiology China, 2021, 48(2):480-492.
[32] LIN S, LIU Z Q, XUE Y P, et al.Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis[J].Applied Biochemistry and Biotechnology, 2016, 179:633-649.
Outlines

/