Effects of ultra-high pressure combined with calcium lactate treatment on yak quality and myoglobin digestion characteristics

  • LI Caiyun ,
  • SUN Hengyuan ,
  • HUA Hongxin ,
  • LIU Shuhua ,
  • ZHANG Yubin
Expand
  • 1(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China)
    2(Shanghai Yiheng Culture Communication Co.Ltd., Shanghai 200000, China)
    3(Animal Husbandry and Veterinary Station, Jinyang Town, Liangzhou District, Wuwei City, Gansu Province, Wuwei 733000, China)

Received date: 2022-07-22

  Revised date: 2022-08-30

  Online published: 2023-11-01

Abstract

In this study, the binding stability of myoglobin and pepsin was determined by measuring the pH value, meat color, lipid oxidation (TBRAS), myoglobin content, shear force and myoglobin digestibility of yak beef, and the binding stability of myoglobin and pepsin was determined by kinetic simulation method, and the effect of ultra-high pressure (100-400 MPa, 15 min) combined with calcium lactate treatment on the edible quality of yak beef and the digestive characteristics of myoglobin was determined. esults showed that under the pressure of 300 MPa, the ultra-high pressure combined with calcium lactate treatment increased the L* and a* values of beef, delayed lipid oxidation, and significantly improved the tenderness of beef (P<0.05). Myoglobin intestinal digestibility increased from 44.05% in the blank group to 52.28%, and gastric digestibility increased by 9.16%. The molecular dynamics simulation results further showed that after 300 MPa high pressure combined with calcium lactate treatment, the stability of myoglobin-pepsin binding was improved, the hydrophobic interaction and hydrogen bond weakened, which significantly changed the interaction conformation of myoglobin heme and pepsin, thereby improving the gastrointestinal digestibility of myoglobin. In summary, the 300 MPa ultra-high pressure combined with calcium lactate treatment significantly improved the color, tenderness and fat oxidation degree of yak beef, and improved the digestibility of myoglobin. This study provides new insights into the underlying mechanisms of myoglobin digestive difficulties.

Cite this article

LI Caiyun , SUN Hengyuan , HUA Hongxin , LIU Shuhua , ZHANG Yubin . Effects of ultra-high pressure combined with calcium lactate treatment on yak quality and myoglobin digestion characteristics[J]. Food and Fermentation Industries, 2023 , 49(19) : 257 -264 . DOI: 10.13995/j.cnki.11-1802/ts.033043

References

[1] 刘晓畅, 张寿, 孙宝忠, 等.牦牛肉品质特性研究进展[J].肉类研究, 2020, 34(11):78-83.
LIU X C, ZHANG S, SUN B Z, et al.Progress in understanding quality characteristics of yak meat[J].Meat Research, 2020, 34(11):78-83.
[2] 张杏亚, 杨波, 李亚蕾, 等.基于蛋白质组学技术研究秦川牛肉宰后贮藏过程中肌红蛋白含量及其衍生物转化[J].食品科学, 2021, 42(7):226-231.
ZHANG X Y, YANG B, LI Y L, et al.Proteomics studies on myoglobin content and its transformation into derivatives in muscle of Qinchuan cattle during postmortem storage[J].Food Science, 2021, 42(7):226-231.
[3] LI Q, ZHAO D, LIU H, et al.“Rigid” structure is a key determinant for the low digestibility of myoglobin[J].Food Chemistry:X, 2020, 7:100094.
[4] KIM S, KIM Y, LEE D B, et al.Effect of centrifugation on tryptic protein digestion[J].Analytical Science and Technology, 2017, 30(2):96-101.
[5] KROLL J, RAWEL H M, SEIDELMANN N.Physicochemical properties and susceptibility to proteolytic digestion of myoglobin-phenol derivatives[J].Journal of Agricultural and Food Chemistry, 2000, 48(5):1580-1587.
[6] LIU H, LI Q, JIANG S, et al.Exploring the underlying mechanisms on NaCl-induced reduction in digestibility of myoglobin[J].Food Chemistry, 2022, 380:132183.
[7] KIM Y H, HUNT M C, MANCINI R A, et al.Mechanism for lactate-color stabilization in injection-enhanced beef[J].Journal of Agricultural and Food Chemistry, 2006, 54(20):7856-7862.
[8] 张玉斌, 李丙子, 雷芸, 等.基于乳酸-LDH的牦牛肉NADH线粒体介导再生研究[J].农业机械学报, 2020, 51(6):353-359.
ZHANG Y B, LI B Z, LEI Y, et al.Effects of lactate-LDH system on NADH regeneration and metmyoglobin reduction in yak beef of mitochondria-mediated in vitro[J].Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6):353-359
[9] 才琳. 超高压处理对镜鲤鱼肠凝胶特性及冷藏过程中品质变化的影响[J].中国食品添加剂, 2022, 33(7):112-116.
CAI L.Effect of ultra-high pressure on Cyprinus carpio sausages gel property and quality changes during refrigerated storage[J].China Food Additives, 2022, 33(7):112-116.
[10] PANEL E B, KOUTSOUMANIS K, ALLENDE A, et al.Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC[J].EFSA Journal, 2020, 18(1):e05967.
[11] LI Q, LIU H, JIANG S, et al.The effects of high pressure treatment on the structural and digestive properties of myoglobin[J].Food Research International, 2022, 156:111193.
[12] HATA H, NISHIYAMA M, KITAO A.Molecular dynamics simulation of proteins under high pressure:Structure, function and thermodynamics[J].Biochimica et Biophysica Acta (BBA) - General Subjects, 2020, 1864(2):129395.
[13] 罗辉, 何雨薇, 张杏亚, 等.秦川牛肉冷藏期间能量代谢变化及其对肉品质的影响[J].食品科学, 2021, 42(17):201-209.
LUO H, HE Y W, ZHANG X Y, et al.Changes in postmortem energy metabolism of Qinchuan cattle meat during chilled storage and its effects on meat quality[J].Food Science, 2021, 42(17):201-209.
[14] 郑娅, 胡生海, 何元翔, 等.牛肉肌红蛋白提纯及其协同脂质氧化效应分析[J].食品科技, 2019, 44(12):111-116.
ZHENG Y, HU S H, HE Y X, et al.Extractation and purification of myoglobin in beef and its synergistic oxidation effect with lipid[J].Food Science and Technology, 2019, 44(12):111-116.
[15] 吴强, 戴四发.超声波结合氯化钙处理对牛肉品质的影响[J].食品科学, 2010, 31(19):141-145.
WU Q, DAI S F.Influence of ultrasonic-assisted calcium chloride treatment on beef quality[J].Food Science, 2010, 31(19):141-145.
[16] 杨玉莹, 张一敏, 毛衍伟, 等.不同部位牦牛肉肌纤维特性与肉品质差异[J].食品科学, 2019, 40(21):72-77.
YANG Y Y, ZHANG Y M, MAO Y W, et al.Differences in myofiber characteristics and meat quality of different yak muscles[J].Food Science, 2019, 40(21):72-77.
[17] 朱宏星, 高田毅, 黄杨, 等.肌红蛋白血红素辅基氧化修饰对肌球蛋白功能特性及凝胶特性的影响[J].食品科学, 2022, 43(8):1-8.
ZHU H X, GAO T Y, HUANG Y, et al.Effect of oxidative modification of myoglobin hemin prosthetic group on the functional properties and gel properties of myosin[J].Food Science, 2022, 43(8):1-8.
[18] BRODKORB A, EGGER L, ALMINGER M, et al.INFOGEST static in vitro simulation of gastrointestinal food digestion[J].Nature Protocols, 2019, 14(4):991-1014.
[19] BIENERT S, WATERHOUSE A, DE BEER T A P, et al.The SWISS-MODEL Repository:New features and functionality[J].Nucleic Acids Research, 2017, 45(D1):D313-D319.
[20] WATERHOUSE A, BERTONI M, BIENERT S, et al.SWISS-MODEL:Homology modelling of protein structures and complexes[J].Nucleic Acids Research, 2018, 46(W1):W296-W303.
[21] SIKES A L, TOBIN A B, TUME R K.Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters[J].Innovative Food Science & Emerging Technologies, 2009, 10(4):405-412.
[22] MARCOS B, KERRY J P, MULLEN A M.High pressure induced changes on sarcoplasmic protein fraction and quality indicators[J].Meat Science, 2010, 85(1):115-120.
[23] MASANA M O, BARRIO Y X, PALLADINO P M, et al.High pressure treatments combined with sodium lactate to inactivate Escherichia coli O157:H7 and spoilage microbiota in cured beef carpaccio[J].Food Microbiology, 2015, 46:610-617.
[24] 王璐, 韩衍青, 杨伯冰, 等.超高压处理对冷却牛肉色泽稳定性的影响[J].食品工业科技, 2015, 36(2):138-142;148.
WANG L, HAN Y Q, YANG B B, et al.Effect of high pressure processing treatment on beef color stability[J].Science and Technology of Food Industry, 2015, 36(2):138-142;148.
[25] KIM Y H, KEETON J T, SMITH S B, et al.Evaluation of antioxidant capacity and colour stability of calcium lactate enhancement on fresh beef under highly oxidising conditions[J].Food Chemistry, 2009, 115(1):272-278.
[26] KIM Y H, KEETON J T, YANG H S, et al.Color stability and biochemical characteristics of bovine muscles when enhanced with L- or D-potassium lactate in high-oxygen modified atmospheres[J].Meat Science, 2009, 82(2):234-240.
[27] 陈骋, 余群力, 韩玲, 等.丙二醛对牛肉线粒体高铁肌红蛋白还原能力的影响[J].农业机械学报, 2015, 46(12):253-259.
CHEN C, YU Q L, HAN L, et al.Effects of malondialdehyde on metmyoglobin reduction ability of bovine muscle mitochondria[J].Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12):253-259.
[28] 邓绍林. 高压和氯化钙结合处理对牛肉品质的影响[D].南京:南京农业大学, 2012.
DENG S L.Effect of high pressure combined with calcium chloride on beef quality[D].Nanjing:Nanjing Agricultural University, 2012.
[29] HUGHES J M, OISETH S K, PURSLOW P P, et al.A structural approach to understanding the interactions between colour, water-holding capacity and tenderness[J].Meat Science, 2014, 98(3):520-532.
[30] 李钊, 李宁宁, 刘玉, 等.超高压对肌原纤维蛋白结构及其凝胶特性影响的研究进展[J].食品与发酵工业, 2020, 46(21):304-309.
LI Z, LI N N, LIU Y, et al.Advances on the effects of ultra-high pressure on myofibrillar protein structure and its gel properties[J].Food and Fermentation Industries, 2020, 46(21):304-309.
[31] XIA M Q, CHEN Y X, MA J, et al.Effects of low frequency magnetic field on myoglobin oxidation stability[J].Food Chemistry, 2020, 309:125651.
[32] 牛淑萍,艾麦提·巴热提.超高压技术在蛋白质食品加工中的应用分析[J].现代食品, 2021(20):125-127.
NIU S P, AI MAI TI·B R T.Application analysis of ultra-high pressure technology in protein food processing[J].Modern Food, 2021(20):125-127.
[33] CAMPUS M.High pressure processing of meat, meat products and seafood[J].Food Engineering Reviews, 2010, 2(4):256-273.
[34] LI Q, LIU H, JIANG S, et al.High pressure treatment modifies rigid structure of myoglobin and improves its digestibility[J].Current Developments in Nutrition, 2021, 5(2):592.
[35] 杨忠志,崔宝秋.血红素近轴侧基氢键的ABEEM/MM分子动力学模拟[J].物理化学学报,2007(9):1332-1336.
YANG Z Z,CUI B Q.Molecular dynamics simulation of ABEEM/MM hydrogen bond of heme nearaxial lateral group[J].Chinese Journal of Chemical Physics, 2007(9):1332-1336.
[36] ZOU H, XU Z Z, ZHAO L, et al.Effects of high pressure processing on the interaction of α-lactalbumin and pelargonidin-3-glucoside[J].Food Chemistry, 2019, 285:22-30.
Outlines

/