Progress on heat resistance mechanism of probiotics

  • WANG Li ,
  • WANG Weiwei ,
  • LI Aike ,
  • CHEN Lixian ,
  • FANG Jun ,
  • QIAO Lin
Expand
  • 1(Academy of National Food and Strategic Reserves Administration, Beijing 100037, China)
    2(Hunan Agricultural university, Changsha 410125, China)

Received date: 2022-10-22

  Revised date: 2022-11-03

  Online published: 2023-11-20

Abstract

Probiotics have a wide range of beneficial effects on humans and animals, which has been widely used in industry and daily life. However, in the process of production and application, probiotics are inevitably affected by adverse environmental conditions such as high temperature, dehydration, and oxidation, leading to damage and even death, which seriously restricts the development of probiotics industry. Researches show that the heat resistance of different probiotic strains could be improved by resistance stress, mutagenesis, and genetic modification, and that microbial stress tolerance is a complex physiological process regulated by multiple metabolic pathways, which is manifested as the effects of cell membrane structure, protein structure, heat stress proteins, DNA/RNA stability, osmoprotectants, and quorum sensing system on the heat resistance of probiotic strain. This paper summarizes the research above, aiming to provide references for the construction and application of heat-resistant probiotics strains.

Cite this article

WANG Li , WANG Weiwei , LI Aike , CHEN Lixian , FANG Jun , QIAO Lin . Progress on heat resistance mechanism of probiotics[J]. Food and Fermentation Industries, 2023 , 49(20) : 346 -351 . DOI: 10.13995/j.cnki.11-1802/ts.034062

References

[1] CORCORAN B, STANTON C, FITZGERALD G, et al. Life under stress: The probiotic stress response and how it may be manipulated[J]. Current Pharmaceutical Design, 2008, 14(14):1382-1399.
[2] MOAYYEDI M, ESKANDARI M H, RAD A H E, et al. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469[J]. Journal of Functional Foods, 2018, 40:391-399.
[3] ANANTA E, VOLKERT M, KNORR D. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG[J]. International Dairy Journal, 2005, 15(4):399-409.
[4] TEIXEIRA P, CASTRO H, MOHÁCSI-FARKAS C, et al. Identification of sites of injury in Lactobacillus bulgaricus during heat stress[J]. Journal of Applied Microbiology, 1997, 83(2):219-226.
[5] PEREIRA-SMITH O M, FISHER S F, SMITH J R. Senescent and quiescent cell inhibitors of DNA synthesis[J]. Experimental Cell Research, 1985, 160(2):297-306.
[6] BEREZOVSKY I N, SHAKHNOVICH E I. Physics and evolution of thermophilic adaptation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12742-12747.
[7] 周小鹭. 嗜热菌及其嗜热机制[J]. 林业科技情报, 1996, 28(3):42-43.
ZHOU X L. Thermophilic bacteria and its thermophilic mechanism[J]. Forestry Science and Technology Information, 1996, 28(3):42-43.
[8] MYKYTCZUK N C S, TREVORS J T, LEDUC L G, et al. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress[J]. Progress in Biophysics and Molecular Biology, 2007, 95(1-3):60-82.
[9] CHEN J, SHEN J, INGVAR HELLGREN L, et al. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate[J]. Scientific Reports, 2015, 5:14199.
[10] DENICH T J, BEAUDETTE L A, LEE H, et al. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes[J]. Journal of Microbiological Methods, 2003, 52(2):149-182.
[11] MIN B, KIM K, LI V, et al. Changes in cell membrane fatty acid composition of Streptococcus thermophilus in response to gradually increasing heat temperature[J]. Journal of Microbiology and Biotechnology, 2020, 30(5):739-748.
[12] SHIN Y, KANG C H, KIM W, et al. Heat adaptation improved cell viability of probiotic Enterococcus faecium HL7 upon various environmental stresses[J]. Probiotics and Antimicrobial Proteins, 2019, 11(2):618-626.
[13] ANNOUS B A, KOZEMPEL M F, KURANTZ M J. Changes in membrane fatty acid composition of Pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance[J]. Applied and Environmental Microbiology, 1999, 65(7):2857-2862.
[14] VELLY H, BOUIX M, PASSOT S, et al. Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161[J]. Applied Microbiology and Biotechnology, 2015, 99(2):907-918.
[15] BUI L M, LEE J Y, GERALDI A, et al. Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions[J]. Journal of Biotechnology, 2015, 204:33-44.
[16] BESADA-LOMBANA P B, FERNANDEZ-MOYA R, FENSTER J, et al. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid[J]. Biotechnology and Bioengineering, 2017, 114(7):1531-1538.
[17] GHOSH K, DILL K. Cellular proteomes have broad distributions of protein stability[J]. Biophysical Journal, 2010, 99(12):3996-4002.
[18] JARZAB A, KURZAWA N, HOPF T, et al. Meltome atlas—Thermal proteome stability across the tree of life[J]. Nature Methods, 2020, 17(5):495-503.
[19] LAO P J, FORSDYKE D R. Thermophilic bacteria strictly obey Szybalski’s transcription direction rule and politely purine-load RNAs with both adenine and guanine[J]. Genome Research, 2000, 10(2):228-236.
[20] LEUENBERGER P, GANSCHA S, KAHRAMAN A, et al. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability[J]. Science, 2017, 355(6327): eaai7825.
[21] BOUTZ D R, CASCIO D, WHITELEGGE J, et al. Discovery of a thermophilic protein complex stabilized by topologically interlinked chains[J]. Journal of Molecular Biology, 2007, 368(5):1332-1344.
[22] SAUNDERS N F W, THOMAS T, CURMI P M G, et al. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii[J]. Genome Research, 2003, 13(7):1580-1588.
[23] 沈嘉澍, 沈标. 嗜热酶的耐热机理[J]. 微生物学杂志, 2010, 30(2):80-85.
SHEN J S, SHEN B. Thermostability mechanism of thermophilic enzymes[J]. Journal of Microbiology, 2010, 30(2):80-85.
[24] 张钰. 鼠李糖乳杆菌胁迫应答机制的研究[D]. 厦门: 厦门大学, 2014.
ZHANG Y. Study on stress response mechanism of Lactobacillus rhamnosus[D].Xiamen: Xiamen University, 2014.
[25] SÖRQVIST S. Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp[J]. Acta Veterinaria Scandinavica, 2003, 44(1):1.
[26] LAPLACE J M, SAUVAGEOT N, HARTKE A, et al. Characterization of Lactobacillus collinoides response to heat, acid and ethanol treatments[J]. Applied Microbiology and Biotechnology, 1999, 51(5):659-663.
[27] SERRAZANETTI D I, GUERZONI M E, CORSETTI A, et al. Metabolic impact and potential exploitation of the stress reactions in lactobacilli[J]. Food Microbiology, 2009, 26(7):700-711.
[28] TÖRÖK Z, HORVÁTH I, GOLOUBINOFF P, et al. Evidence for a lipochaperonin: Association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(6):2192-2197.
[29] MAGER W H, DE KRUIJFF A J. Stress-induced transcriptional activation[J]. Microbiological Reviews, 1995, 59(3):506-531.
[30] LUAN G D, DONG H J, ZHANG T R, et al. Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria[J]. Journal of Biotechnology, 2014, 178:38-40.
[31] KUMAR M, PRASANNA R, LONE S, et al. Cloning and expression of dnaK gene from Bacillus pumilus of hot water spring origin[J]. Applied & Translational Genomics, 2014, 3(1):14-20.
[32] TOMOYASU T, TABATA A, IMAKI H, et al. Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity[J]. Cell Stress and Chaperones, 2012, 17(1):41-55.
[33] WANG J Y, WANG W S, WANG H Z, et al. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic Bacillus strains[J]. Applied Microbiology and Biotechnology, 2019, 103:4455-4465.
[34] GOTTESMAN S. Proteases and their targets in Escherichia coli[J]. Annual Review of Genetics, 1996, 30:465-506.
[35] NAIR S, DERRÉ I, MSADEK T, et al. CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes[J]. Molecular Microbiology, 2000, 35(4):800-11.
[36] KHASKHELI G B, ZUO F L, YU R, et al. Overexpression of small heat shock protein enhances heat- and salt-stress tolerance of Bifidobacterium longum NCC2705[J]. Current Microbiology, 2015, 71(1):8-15.
[37] EZEMADUKA A N, YU J Y, SHI X D, et al. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50℃ conceivably by maintaining cell envelope integrity[J]. Journal of Bacteriology, 2014, 196(11):2004-2011.
[38] LIU Y Q, ZHANG G L, SUN H, et al. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices[J]. Bioresource Technology, 2014, 170:38-44.
[39] 陈海燕, 严尚滨, 冯印, 等. 水生栖热菌耐热机制初探[J]. 吉林农业, 2012(6):38.
CHEN H Y, YAN S B, FENG Y, et al. Preliminary study on heat-resistant mechanism of aquatic thermophilic bacteria[J]. Agriculture of Jilin, 2012(6):38.
[40] FORTERRE P. A hot topic: The origin of hyperthermophiles[J]. Cell, 1996, 85(6):789-792.
[41] KORTMANN J, NARBERHAUS F. Bacterial RNA thermometers: Molecular zippers and switches[J]. Nature Reviews Microbiology, 2012, 10(4):255-265.
[42] CORDIN O, BANROQUES J, TANNER N K, et al. The DEAD-box protein family of RNA helicases[J]. Gene, 2006, 367:17-37.
[43] AZIZOGLU O, KATHARIOU S. Inactivation of a cold-induced putative RNA helicase gene of Listeria monocytogenes is accompanied by failure to grow at low temperatures but does not affect freeze-thaw tolerance[J]. Journal of Food Protection, 2010, 73(8):1474-1479.
[44] PANDIANI F, CHAMOT S, BRILLARD J, et al. Role of the five RNA helicases in the adaptive response of Bacillus cereus ATCC 14579 cells to temperature, pH, and oxidative stresses[J]. Applied and Environmental Microbiology, 2011, 77(16):5604-5609.
[45] AVONCE N, MENDOZA-VARGAS A, MORETT E, et al. Insights on the evolution of trehalose biosynthesis[J]. BMC Evolutionary Biology, 2006, 6:109-109.
[46] LEE D H, GOLDBERG A L. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 1998, 18(1):30-38.
[47] CHENG H J, SUN Y J, CHANG H W, et al. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance[J]. Bioprocess and Biosystems Engineering, 2020, 43:895-908.
[48] WANG S H, YAO Q H, TAO J M, et al. Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV 2A region in a single open reading frame in Pichia pastoris[J]. Applied Microbiology and Biotechnology, 2007, 77(4):891-899.
[49] LASPIDOU C S, SPYROU L A, ARAVAS N, et al. Material modeling of biofilm mechanical properties[J]. Mathematical Biosciences, 2014, 251:11-15.
[50] REDERSTORFF E, FATIMI A, SINQUIN C, et al. Sterilization of exopolysaccharides produced by deep-sea bacteria: Impact on their stability and degradation[J]. Marine Drugs, 2011, 9(2):224-241.
[51] 刘格飞. 嗜酸乳杆菌klds 1.0738营养消耗模式研究[D].Harbin: Northeast Agricultural University, 2017.
LIU G F. Lactobacillus acidophilus KLDS 1.0738营养消耗模式研究[D]. 哈尔滨: 东北农业大学, 2017.
[52] LEBEER S, CLAES I J J, VERHOEVEN T L A, et al. Impact of luxS and suppressor mutations on the gastrointestinal transit of Lactobacillus rhamnosus GG[J]. Applied and Environmental Microbiology, 2008, 74(15):4711-4718.
[53] CHEN C M, YAN Q L, TAO M X, et al. Characterization of serine acetyltransferase (CysE) from methicillin-resistant Staphylococcus aureus and inhibitory effect of two natural products on CysE[J]. Microbial Pathogenesis, 2019, 131:218-226.
[54] GIBSON B. The effect of high sugar concentrations on the heat resistance of vegetative micro-organisms[J]. Journal of Applied Bacteriology, 1973, 36(3):365-376.
[55] KILSTRUP M, HAMMER K. Short communication: Salt extends the upper temperature limit for growth of Lactococcus lactis ssp. cremoris on solid M17 medium[J]. Journal of Dairy Science, 2000, 83(7):1448-1450.
[56] O′SULLIVAN E, CONDON S. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis[J]. Applied and Environmental Microbiology, 1997, 63(11):4210-4215.
[57] ARDANARESWARI K, UTAMI T, RAHAYU E S. Effect of heat adaptation and pH adjustment on the survival of spray-dried Lactobacillus paracasei SNP2[J]. British Food Journal, 2017, 119(10):2267-2276.
[58] HUANG S, RABAH H, JARDIN J, et al. Hyperconcentrated sweet whey, a new culture medium that enhances propionibacterium freudenreichii stress tolerance[J]. Applied and Environmental Microbiology, 2016, 82(15):4641-4651.
[59] 刘珊珊. 启动子定向进化、诱变、基因组重排以及高温驯化相结合筛选耐高温酿酒酵母[D]. 天津: 天津科技大学, 2017.
LIU S S. Screening of thermotolerant Saccharomyces cerevisiae by directed evolution of promoter, mutation, genome rearrangement and high temperature domestication[D].Tianjin: Tianjin University of Science & Technology, 2017.
[60] 鲁明波, 曾翔, 张力, 等. 紫外线诱变和恒化器培养筛选耐高温的高产乳酸菌[J]. 微生物学通报, 2010, 37(4):520-523.
LU M B, ZENG X, ZHANG L, et al. Ultraviolet mutagenesis combined chemostat enrichment method to screen high-temperature resistent and high-yield lactic acid bacteria[J]. Microbiology China, 2010, 37(4):520-523.
[61] TAN Z G, KHAKBAZ P, CHEN Y X, et al. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables[J]. Metabolic Engineering, 2017, 44:1-12.
[62] ABDULLAH-AL-MAHIN, SUGIMOTO S, HIGASHI C, et al. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK[J]. Applied and Environmental Microbiology, 2010, 76(13):4277-4285.
Outlines

/