[1] CORCORAN B, STANTON C, FITZGERALD G, et al. Life under stress: The probiotic stress response and how it may be manipulated[J]. Current Pharmaceutical Design, 2008, 14(14):1382-1399.
[2] MOAYYEDI M, ESKANDARI M H, RAD A H E, et al. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469[J]. Journal of Functional Foods, 2018, 40:391-399.
[3] ANANTA E, VOLKERT M, KNORR D. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG[J]. International Dairy Journal, 2005, 15(4):399-409.
[4] TEIXEIRA P, CASTRO H, MOHÁCSI-FARKAS C, et al. Identification of sites of injury in Lactobacillus bulgaricus during heat stress[J]. Journal of Applied Microbiology, 1997, 83(2):219-226.
[5] PEREIRA-SMITH O M, FISHER S F, SMITH J R. Senescent and quiescent cell inhibitors of DNA synthesis[J]. Experimental Cell Research, 1985, 160(2):297-306.
[6] BEREZOVSKY I N, SHAKHNOVICH E I. Physics and evolution of thermophilic adaptation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12742-12747.
[7] 周小鹭. 嗜热菌及其嗜热机制[J]. 林业科技情报, 1996, 28(3):42-43.
ZHOU X L. Thermophilic bacteria and its thermophilic mechanism[J]. Forestry Science and Technology Information, 1996, 28(3):42-43.
[8] MYKYTCZUK N C S, TREVORS J T, LEDUC L G, et al. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress[J]. Progress in Biophysics and Molecular Biology, 2007, 95(1-3):60-82.
[9] CHEN J, SHEN J, INGVAR HELLGREN L, et al. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate[J]. Scientific Reports, 2015, 5:14199.
[10] DENICH T J, BEAUDETTE L A, LEE H, et al. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes[J]. Journal of Microbiological Methods, 2003, 52(2):149-182.
[11] MIN B, KIM K, LI V, et al. Changes in cell membrane fatty acid composition of Streptococcus thermophilus in response to gradually increasing heat temperature[J]. Journal of Microbiology and Biotechnology, 2020, 30(5):739-748.
[12] SHIN Y, KANG C H, KIM W, et al. Heat adaptation improved cell viability of probiotic Enterococcus faecium HL7 upon various environmental stresses[J]. Probiotics and Antimicrobial Proteins, 2019, 11(2):618-626.
[13] ANNOUS B A, KOZEMPEL M F, KURANTZ M J. Changes in membrane fatty acid composition of Pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance[J]. Applied and Environmental Microbiology, 1999, 65(7):2857-2862.
[14] VELLY H, BOUIX M, PASSOT S, et al. Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161[J]. Applied Microbiology and Biotechnology, 2015, 99(2):907-918.
[15] BUI L M, LEE J Y, GERALDI A, et al. Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions[J]. Journal of Biotechnology, 2015, 204:33-44.
[16] BESADA-LOMBANA P B, FERNANDEZ-MOYA R, FENSTER J, et al. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid[J]. Biotechnology and Bioengineering, 2017, 114(7):1531-1538.
[17] GHOSH K, DILL K. Cellular proteomes have broad distributions of protein stability[J]. Biophysical Journal, 2010, 99(12):3996-4002.
[18] JARZAB A, KURZAWA N, HOPF T, et al. Meltome atlas—Thermal proteome stability across the tree of life[J]. Nature Methods, 2020, 17(5):495-503.
[19] LAO P J, FORSDYKE D R. Thermophilic bacteria strictly obey Szybalski’s transcription direction rule and politely purine-load RNAs with both adenine and guanine[J]. Genome Research, 2000, 10(2):228-236.
[20] LEUENBERGER P, GANSCHA S, KAHRAMAN A, et al. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability[J]. Science, 2017, 355(6327): eaai7825.
[21] BOUTZ D R, CASCIO D, WHITELEGGE J, et al. Discovery of a thermophilic protein complex stabilized by topologically interlinked chains[J]. Journal of Molecular Biology, 2007, 368(5):1332-1344.
[22] SAUNDERS N F W, THOMAS T, CURMI P M G, et al. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii[J]. Genome Research, 2003, 13(7):1580-1588.
[23] 沈嘉澍, 沈标. 嗜热酶的耐热机理[J]. 微生物学杂志, 2010, 30(2):80-85.
SHEN J S, SHEN B. Thermostability mechanism of thermophilic enzymes[J]. Journal of Microbiology, 2010, 30(2):80-85.
[24] 张钰. 鼠李糖乳杆菌胁迫应答机制的研究[D]. 厦门: 厦门大学, 2014.
ZHANG Y. Study on stress response mechanism of Lactobacillus rhamnosus[D].Xiamen: Xiamen University, 2014.
[25] SÖRQVIST S. Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp[J]. Acta Veterinaria Scandinavica, 2003, 44(1):1.
[26] LAPLACE J M, SAUVAGEOT N, HARTKE A, et al. Characterization of Lactobacillus collinoides response to heat, acid and ethanol treatments[J]. Applied Microbiology and Biotechnology, 1999, 51(5):659-663.
[27] SERRAZANETTI D I, GUERZONI M E, CORSETTI A, et al. Metabolic impact and potential exploitation of the stress reactions in lactobacilli[J]. Food Microbiology, 2009, 26(7):700-711.
[28] TÖRÖK Z, HORVÁTH I, GOLOUBINOFF P, et al. Evidence for a lipochaperonin: Association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(6):2192-2197.
[29] MAGER W H, DE KRUIJFF A J. Stress-induced transcriptional activation[J]. Microbiological Reviews, 1995, 59(3):506-531.
[30] LUAN G D, DONG H J, ZHANG T R, et al. Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria[J]. Journal of Biotechnology, 2014, 178:38-40.
[31] KUMAR M, PRASANNA R, LONE S, et al. Cloning and expression of dnaK gene from Bacillus pumilus of hot water spring origin[J]. Applied & Translational Genomics, 2014, 3(1):14-20.
[32] TOMOYASU T, TABATA A, IMAKI H, et al. Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity[J]. Cell Stress and Chaperones, 2012, 17(1):41-55.
[33] WANG J Y, WANG W S, WANG H Z, et al. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic Bacillus strains[J]. Applied Microbiology and Biotechnology, 2019, 103:4455-4465.
[34] GOTTESMAN S. Proteases and their targets in Escherichia coli[J]. Annual Review of Genetics, 1996, 30:465-506.
[35] NAIR S, DERRÉ I, MSADEK T, et al. CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes[J]. Molecular Microbiology, 2000, 35(4):800-11.
[36] KHASKHELI G B, ZUO F L, YU R, et al. Overexpression of small heat shock protein enhances heat- and salt-stress tolerance of Bifidobacterium longum NCC2705[J]. Current Microbiology, 2015, 71(1):8-15.
[37] EZEMADUKA A N, YU J Y, SHI X D, et al. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50℃ conceivably by maintaining cell envelope integrity[J]. Journal of Bacteriology, 2014, 196(11):2004-2011.
[38] LIU Y Q, ZHANG G L, SUN H, et al. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices[J]. Bioresource Technology, 2014, 170:38-44.
[39] 陈海燕, 严尚滨, 冯印, 等. 水生栖热菌耐热机制初探[J]. 吉林农业, 2012(6):38.
CHEN H Y, YAN S B, FENG Y, et al. Preliminary study on heat-resistant mechanism of aquatic thermophilic bacteria[J]. Agriculture of Jilin, 2012(6):38.
[40] FORTERRE P. A hot topic: The origin of hyperthermophiles[J]. Cell, 1996, 85(6):789-792.
[41] KORTMANN J, NARBERHAUS F. Bacterial RNA thermometers: Molecular zippers and switches[J]. Nature Reviews Microbiology, 2012, 10(4):255-265.
[42] CORDIN O, BANROQUES J, TANNER N K, et al. The DEAD-box protein family of RNA helicases[J]. Gene, 2006, 367:17-37.
[43] AZIZOGLU O, KATHARIOU S. Inactivation of a cold-induced putative RNA helicase gene of Listeria monocytogenes is accompanied by failure to grow at low temperatures but does not affect freeze-thaw tolerance[J]. Journal of Food Protection, 2010, 73(8):1474-1479.
[44] PANDIANI F, CHAMOT S, BRILLARD J, et al. Role of the five RNA helicases in the adaptive response of Bacillus cereus ATCC 14579 cells to temperature, pH, and oxidative stresses[J]. Applied and Environmental Microbiology, 2011, 77(16):5604-5609.
[45] AVONCE N, MENDOZA-VARGAS A, MORETT E, et al. Insights on the evolution of trehalose biosynthesis[J]. BMC Evolutionary Biology, 2006, 6:109-109.
[46] LEE D H, GOLDBERG A L. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 1998, 18(1):30-38.
[47] CHENG H J, SUN Y J, CHANG H W, et al. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance[J]. Bioprocess and Biosystems Engineering, 2020, 43:895-908.
[48] WANG S H, YAO Q H, TAO J M, et al. Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV 2A region in a single open reading frame in Pichia pastoris[J]. Applied Microbiology and Biotechnology, 2007, 77(4):891-899.
[49] LASPIDOU C S, SPYROU L A, ARAVAS N, et al. Material modeling of biofilm mechanical properties[J]. Mathematical Biosciences, 2014, 251:11-15.
[50] REDERSTORFF E, FATIMI A, SINQUIN C, et al. Sterilization of exopolysaccharides produced by deep-sea bacteria: Impact on their stability and degradation[J]. Marine Drugs, 2011, 9(2):224-241.
[51] 刘格飞. 嗜酸乳杆菌klds 1.0738营养消耗模式研究[D].Harbin: Northeast Agricultural University, 2017.
LIU G F. Lactobacillus acidophilus KLDS 1.0738营养消耗模式研究[D]. 哈尔滨: 东北农业大学, 2017.
[52] LEBEER S, CLAES I J J, VERHOEVEN T L A, et al. Impact of luxS and suppressor mutations on the gastrointestinal transit of Lactobacillus rhamnosus GG[J]. Applied and Environmental Microbiology, 2008, 74(15):4711-4718.
[53] CHEN C M, YAN Q L, TAO M X, et al. Characterization of serine acetyltransferase (CysE) from methicillin-resistant Staphylococcus aureus and inhibitory effect of two natural products on CysE[J]. Microbial Pathogenesis, 2019, 131:218-226.
[54] GIBSON B. The effect of high sugar concentrations on the heat resistance of vegetative micro-organisms[J]. Journal of Applied Bacteriology, 1973, 36(3):365-376.
[55] KILSTRUP M, HAMMER K. Short communication: Salt extends the upper temperature limit for growth of Lactococcus lactis ssp. cremoris on solid M17 medium[J]. Journal of Dairy Science, 2000, 83(7):1448-1450.
[56] O′SULLIVAN E, CONDON S. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis[J]. Applied and Environmental Microbiology, 1997, 63(11):4210-4215.
[57] ARDANARESWARI K, UTAMI T, RAHAYU E S. Effect of heat adaptation and pH adjustment on the survival of spray-dried Lactobacillus paracasei SNP2[J]. British Food Journal, 2017, 119(10):2267-2276.
[58] HUANG S, RABAH H, JARDIN J, et al. Hyperconcentrated sweet whey, a new culture medium that enhances propionibacterium freudenreichii stress tolerance[J]. Applied and Environmental Microbiology, 2016, 82(15):4641-4651.
[59] 刘珊珊. 启动子定向进化、诱变、基因组重排以及高温驯化相结合筛选耐高温酿酒酵母[D]. 天津: 天津科技大学, 2017.
LIU S S. Screening of thermotolerant Saccharomyces cerevisiae by directed evolution of promoter, mutation, genome rearrangement and high temperature domestication[D].Tianjin: Tianjin University of Science & Technology, 2017.
[60] 鲁明波, 曾翔, 张力, 等. 紫外线诱变和恒化器培养筛选耐高温的高产乳酸菌[J]. 微生物学通报, 2010, 37(4):520-523.
LU M B, ZENG X, ZHANG L, et al. Ultraviolet mutagenesis combined chemostat enrichment method to screen high-temperature resistent and high-yield lactic acid bacteria[J]. Microbiology China, 2010, 37(4):520-523.
[61] TAN Z G, KHAKBAZ P, CHEN Y X, et al. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables[J]. Metabolic Engineering, 2017, 44:1-12.
[62] ABDULLAH-AL-MAHIN, SUGIMOTO S, HIGASHI C, et al. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK[J]. Applied and Environmental Microbiology, 2010, 76(13):4277-4285.