Study on isoliquiritigenin nanoparticles for intervention of ulcerative colitis

  • ZHANG Linjing ,
  • QIAN Nan ,
  • YU Butao ,
  • CHEN Yuyao ,
  • MA Jiahui ,
  • ZHANG Chenxi ,
  • WANG Wei ,
  • CHENG Xiangrong
Expand
  • 1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
    2(Suzhou Institute for Food Control, Suzhou 215000, China)

Received date: 2023-07-13

  Revised date: 2023-08-23

  Online published: 2024-01-17

Abstract

To improve the effect of isoliquiritigenin on ulcerative colitis (UC), zein-ISO nanoparticles were prepared by an anti-solvent precipitation method with zein and pectin as coating materials. The preparation conditions of isoliquiritigenin nanoparticles were optimized through single factor experiments and their physicochemical properties were characterized. The release behavior of ISO in the gastrointestinal tract before and after embedding was compared through simulated digestion experiments in vitro, and the intervention effect of zein-ISO on UC was evaluated through animal experiments. Results showed that the zein-ISO nanoparticles prepared with a mass concentration of 20 g/L of zein solution, a volume fraction of 80% of ethanol solution, an ISO addition of 6 mg, and a zein pectin mass ratio of 2∶1 had high stability with an average particle size of 102.3 nm and an embedding rate of 91.66%. The simulated digestion experiments in vitro showed that the release rate of zein-ISO in intestinal fluid (53.15%) was significantly higher than that in gastric fluid (18.85%). Animal experiments have shown that compared to free ISO, zein-ISO significantly improved the disease state of shortened colon length in colitis mice (P<0.001) and reduced the levels of inflammatory factors , including tumour necrosis factor-α, interleukin-1β, and interleukin-6 in colon tissue (P<0.001). The research results provide new ideas for the development and utilization of poorly water-soluble active dietary functional factors such as ISO, as well as intervention in UC.

Cite this article

ZHANG Linjing , QIAN Nan , YU Butao , CHEN Yuyao , MA Jiahui , ZHANG Chenxi , WANG Wei , CHENG Xiangrong . Study on isoliquiritigenin nanoparticles for intervention of ulcerative colitis[J]. Food and Fermentation Industries, 2023 , 49(24) : 70 -79 . DOI: 10.13995/j.cnki.11-1802/ts.036768

References

[1] 石玉花, 李瑞萍, 陈小芸, 等. 异甘草素抗肿瘤作用及其机制研究进展[J]. 实用药物与临床, 2020, 23(4):371-375.
SHI Y H, LI R P, CHEN X Y, et al. Progress of researches in anti-tumor effects and mechanisms of isoliquiritigenin[J]. Practical Pharmacy and Clinical Remedies, 2020, 23(4):371-375.
[2] LI X, SUN R, LIU R P. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities[J]. Pharmacological Research, 2019, 144:210-226.
[3] CHOI Y H, BAE J K, CHAE H S, et al. Isoliquiritigenin ameliorates dextran sulfate sodium-induced colitis through the inhibition of MAPK pathway[J]. International Immunopharmacology, 2016, 31:223-232.
[4] JIN X Y, SOHN D H, LEE S H. Isoliquiritigenin suppresses tumor necrosis factor-α-induced inflammation via peroxisome proliferator-activated receptor-γ in intestinal epithelial cells[J]. Archives of Pharmacal Research, 2016, 39(10):1465-1471.
[5] XUE J C, YUAN S, MENG H, et al. The role and mechanism of flavonoid herbal natural products in ulcerative colitis[J]. Biomedicine & Pharmacotherapy, 2023, 158:114086.
[6] 谢育娇. 异甘草素混合胶束的制备与质量评价[D].镇江: 江苏大学, 2020.
XIE Y J. Preparation and evaluation of mixed isoliquiritigenin-loaded micelles[D].Zhenjiang: Jiangsu University, 2020.
[7] 刘勇华, 张留超, 郭晓娜. 异甘草素纳米混悬剂的制备及其体内药动学研究[J]. 中成药, 2022, 44(5):1379-1385.
LIU Y H, ZHANG L C, GUO X N. Preparation and in vivo pharmacokinetics of isoliquiritigenin nanosuspensions[J]. Chinese Traditional Patent Medicine, 2022, 44(5):1379-1385.
[8] HUSSAIN S, JOO J, KANG J, et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy[J]. Nature Biomedical Engineering, 2018, 2(2):95-103.
[9] 马启珍, 张文萍, 党宏万, 等. 异甘草素纳米结晶的制备与评价[J]. 宁夏医科大学学报, 2019, 41(2):127-131.
MA Q Z, ZHANG W P, DANG H W, et al. Preparation and characterization of isoliquiritigenin nanocrystals[J]. Journal of Ningxia Medical University, 2019, 41(2):127-131.
[10] NISHIMOTO-SAUCEDA D, ROMERO-ROBLES L E, ANTUNES-RICARDO M. Biopolymer nanoparticles: A strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients[J]. Journal of the Science of Food and Agriculture, 2022, 102(1):41-52
[11] LIU L S, FISHMAN M L, HICKS K B. Pectin in controlled drug delivery-A review[J]. Cellulose, 2007, 14(1):15-24.
[12] CONTADO C, CASELOTTO L, MELLO P, et al. Design and formulation of Eudragit-coated zein/pectin nanoparticles for the colon delivery of resveratrol[J]. European Food Research and Technology, 2020, 246(12):2427-2441.
[13] 郭远治. 七清败毒散质量标准研究[D]. 杨凌: 西北农林科技大学, 2020.
GUO Y Z. Study on quality standards of qiqing Baidu Powder[D]. Yangling: Northwest A & F University, 2020.
[14] YANG Z Y, MCCLEMENTS D J, PENG X W, et al. Co-encapsulation of quercetin and resveratrol in zein/carboxymethyl cellulose nanoparticles: Characterization, stability and in vitro digestion[J]. Food & Function, 2022, 13(22):11652-11663.
[15] ZHANG Y, TAN L X, LI C, et al. Sulforaphane alter the microbiota and mitigate colitis severity on mice ulcerative colitis induced by DSS[J]. AMB Express, 2020, 10(1):119.
[16] 冯颖淑. 辛香料活性成分绿原酸和辣椒碱的纳米脂质给药系统研究[D]. 镇江: 江苏大学, 2016.
FENG Y S. Lipid-based nano drug delivery system of chlorogenic acid and capsaicin as bioactive components from edible spice[D]. Zhenjiang: Jiangsu University, 2016.
[17] WANG Y, PADUA G W. Formation of zein microphases in ethanol-water[J]. Langmuir, 2010, 26(15):12897-12901.
[18] 赖婵娟, 吴磊燕, 胡林芳, 等. 不同溶剂中玉米醇溶蛋白的聚集状态和结构性质[J].现代食品科技, 2021, 37(6):115-123.
LAI C J, WU L Y, HU L F, et al. Aggregation state and structural properties of zein in different solvents[J]. Modern Food Science and Technology, 2021, 37(6):115-123.
[19] RODRÍGUEZ-FÉLIX F, DEL-TORO-SÁNCHEZ C L, JAVIER CINCO-MOROYOQUI F, et al. Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability[J]. Journal of Food Science, 2019, 84(10):2883-2897.
[20] CIRIMINNA R, FIDALGO A, SCURRIA A, et al. Pectin: New science and forthcoming applications of the most valued hydrocolloid[J]. Food Hydrocolloids, 2022, 127:107483.
[21] CHANG C, WANG T R, HU Q B, et al. Zein/caseinate/pectin complex nanoparticles: Formation and characterization[J]. International Journal of Biological Macromolecules, 2017, 104(Pt A):117-124.
[22] LARA-ESPINOZA C, CARVAJAL-MILLÁN E, BALANDRÁN-QUINTANA R, et al. Pectin and pectin-based composite materials: Beyond food texture[J]. Molecules, 2018, 23(4):942.
[23] ZHANG D C, JIANG F Y, LING J H, et al. Delivery of curcumin using a zein-xanthan gum nano complex: Fabrication, characterization, and in vitro release properties[J]. Colloids and Surfaces B: Biointerfaces, 2021, 204:111827.
[24] 王美. 荷载β-胡萝卜素多重复合核壳结构纳米粒子的制备及体系特性研究[D]. 杭州: 浙江工商大学, 2018.
WANG M. Preparation of loading β-carotene multiple compound core-shell nanoparticle and research on properties of dispersion[D]. Hangzhou: Zhejiang Gongshang University, 2018.
[25] LI D D, WEI Z H, SUN J L, et al. Tremella polysaccharides-coated zein nanoparticles for enhancing stability and bioaccessibility of curcumin[J]. Current Research in Food Science, 2022, 5:611-618.
[26] 孙丽君, 沈佩琼, 赵亚平. 超临界CO2抗溶剂法制备白藜芦醇-玉米蛋白纳米粒[J]. 精细化工, 2011, 28(3):270-274.
SUN L J, SHEN P Q, ZHAO Y P. Preparation of resveratrol-loaded zein nanoparticles by method of supercritical CO2 anti-solvent technology[J]. Fine Chemicals, 2011, 28(3):270-274.
[27] 张士凯, 何子杨, 秦伟帅, 等. 欧李果胶理化特性及乳化性质[J]. 食品科学, 2021, 42(20):15-21.
ZHANG S K, HE Z Y, QIN W S, et al. Physicochemical characterization and emulsification properties of Cerasus humilis fruit pectin[J]. Food Science, 2021, 42(20):15-21.
[28] JIN J C, LIU C Z, TONG H F, et al. Encapsulation of EGCG by zein-gum Arabic complex nanoparticles and in vitro simulated digestion of complex nanoparticles[J]. Foods, 2022, 11(14):2131.
[29] WU X Z, LI J M, HU C M, et al. Inclusion complex of isoliquiritigenin with sulfobutyl ether-β-cyclodextrin: Preparation, characterization, inclusion mode, solubilization, and stability[J]. Frontiers in Chemistry, 2022, 10:930297.
[30] ALSHEHRI S, IMAM S S, ALTAMIMI M A, et al. Enhanced dissolution of luteolin by solid dispersion prepared by different methods: Physicochemical characterization and antioxidant activity[J]. ACS Omega, 2020, 5(12):6461-6471.
[31] KHAN M A, YUE C, FANG Z, et al. Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol[J]. Journal of Food Engineering, 2019, 258:45-53.
[32] VITYAZEV F V, FEDYUNEVA M I, GOLOVCHENKO V V, et al. Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract[J]. Carbohydrate Polymers, 2017, 157:9-20.
[33] WANG X Y, LI X, XUE J, et al. Mechanistic understanding of the effect of zein-chlorogenic acid interaction on the properties of electrospun nanofiber films[J]. Food Chemistry: X, 2022, 16:100454.
[34] REN X F, HOU T, LIANG Q F, et al. Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation[J]. Food Chemistry, 2019, 279:223-230.
[35] 刘钱媛. 负载紫檀芪的玉米醇溶蛋白-褐藻糖胶纳米颗粒制备及生物活性研究[D]. 无锡: 江南大学, 2022.
LIU Q Y. Study on the fabrication and biological activity of pterostilbene-loaded zein-fucoidan nanoparticles[D]. Wuxi: Jiangnan University, 2022.
[36] 梁晓. 负载单宁酸和白藜芦醇的玉米醇溶蛋白纳米颗粒制备及生物活性研究[D]. 广州: 广东药科大学, 2021.
LIANG X. Fabrication and bioactivity of tannic acid and resveratrol loaded zein nanoparticles[D]. Guangzhou: Guangdong Pharmaceutical University, 2021.
[37] 林爽. 具有氧化还原响应的EGCG/Cys交联载药纳米颗粒的制备和性能研究[D]. 成都: 西南交通大学, 2019.
LIN S. Preparation and properties of redox-sensitive EGCG/cys cross-linked drug-loaded nanoparticles[D]. Chengdu: Southwest Jiaotong University, 2019.
[38] ZHANG L, SANG Y A, FENG J, et al. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery[J]. Journal of Drug Targeting, 2016, 24(7):579-589.
[39] XIAO M, WU S Y, CHENG Y F, et al. Colon-specific delivery of isoliquiritigenin by oral edible zein/caseate nano complex for ulcerative colitis treatment[J]. Frontiers in Chemistry, 2022, 10:981055.
[40] RANGANATHAN P, SHANMUGAM A, SWAFFORD D, et al. GPR81, a cell-surface receptor for lactate, regulates intestinal homeostasis and protects mice from experimental colitis[J]. Journal of Immunology, 2018, 200(5):1781-1789.
[41] ZHANG M Z, XU C L, LIU D D, et al. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis[J]. Journal of Crohn’s and Colitis, 2018, 12(2):217-229.
[42] ZHANG X Y, QIAO H, ZHANG T F, et al. Enhancement of gastrointestinal absorption of isoliquiritigenin by nanostructured lipid carrier[J]. Advanced Powder Technology, 2014, 25(3):1060-1068.
Outlines

/