Research progress on regulation mechanism of ethanol in Saccharomyces cerevisiae and breeding of low-yielding strains

  • LI Na ,
  • LI Ying ,
  • SUN Yue
Expand
  • 1(College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China)
    2(College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China)

Received date: 2023-09-26

  Revised date: 2023-11-04

  Online published: 2024-08-21

Abstract

In recent years, global warming has led to an increase in the sugar content of grapes, which has led to a gradual increase of ethanol content in wine.The high ethanol content will affect the flavor characteristics of wine and human health.Therefore, how to effectively reduce the ethanol content in wine has attracted more and more attention.It is of great significance to deeply study the regulation mechanism of ethanol metabolism in Saccharomyces cerevisiae, and to select low-yield ethanol S.cerevisiae, in order to solve the wine quality problems caused by high alcohol content in wine.In order to provide a reference for obtaining excellent low-yielding ethanol strains and achieving precise regulation of ethanol content in wine.The metabolic pathways and key regulatory genes of ethanol in S.cerevisiae were reviewed firstly.Furthermore, the molecular mechanism of S.cerevisiae in regulating ethanol production is analyzed.Finally, the common methods in the selection and breeding of low-yielding ethanol strains are summarized.

Cite this article

LI Na , LI Ying , SUN Yue . Research progress on regulation mechanism of ethanol in Saccharomyces cerevisiae and breeding of low-yielding strains[J]. Food and Fermentation Industries, 2024 , 50(15) : 315 -323 . DOI: 10.13995/j.cnki.11-1802/ts.037490

References

[1] GUINDAL A M, MORALES P, TRONCHONI J, et al.Reduction of ethanol content in wine with an improved combination of yeast strains and process conditions[J].Food Microbiology, 2023, 115:104344.
[2] ABREU T, PERESTRELO R, BORDIGA M, et al.The flavor chemistry of fortified wines-a comprehensive approach[J].Foods, 2021, 10(6):1239.
[3] JONES-MOORE H R, JELLEY R, MARANGON M, et al.The polysaccharides of winemaking:From grape to wine[J].Trends in Food Science and Technology, 2021, 111:731-740.
[4] ENGLEZOS V, CRAVERO F, TORCHIO F, et al.Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae[J].Food Microbiology, 2018, 69:179-188.
[5] LAHTINEN H, MOUSTGAARD H, RIPATTI S, et al.Association between genetic risk of alcohol consumption and alcohol-related morbidity and mortality under different alcohol policy conditions:Evidence from the Finnish alcohol price reduction of 2004[J].Addiction, 2023, 118(4):678-685.
[6] CANONICO L, COMITINI F, CIANI M.Metschnikowia pulcherrima selected strain for ethanol reduction in wine:Influence of cell immobilization and aeration condition[J].Foods, 2019, 8(9):378.
[7] MULERO-CEREZO J, TUÑÓN-MOLINA A, CANO-VICENT A, et al.Alcoholic and non-alcoholic rosé wines made with Saccharomyces cerevisiae var.boulardii probiotic yeast[J].Archives of Microbiology, 2023, 205(5):201.
[8] HENDERSON C M, BLOCK D E.Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2014, 80(10):2966-2972.
[9] ROLLE L, ENGLEZOS V, TORCHIO F, et al.Alcohol reduction in red wines by technological and microbiological approaches:A comparative study[J].Australian Journal of Grape and Wine Research, 2018, 24(1):62-74.
[10] TILLOY V, CADIÈRE A, EHSANI M, et al.Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae[J].International Journal of Food Microbiology, 2015, 213:49-58.
[11] DUNCAN J D, SETATI M E, DIVOL B.Redox cofactor metabolism in Saccharomyces cerevisiae and its impact on the production of alcoholic fermentation end-products[J].Food Research International, 2023, 163:112276.
[12] SABATER-MUÑOZ B, MATTENBERGER F, FARES M A, et al.Transcriptional rewiring, adaptation, and the role of gene duplication in the metabolism of ethanol of Saccharomyces cerevisiae[J].mSystems, 2020, 5(4):e00416-e00420.
[13] HA S J, GALAZKA J M, KIM S R, et al.Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2):504-509.
[14] SHARMA S, TAURO P.Control of ethanol production by yeast:Role of pyruvate decarboxylase and alcohol dehydrogenase[J].Biotechnology Letters, 1986, 8(10):735-738.
[15] PRONK J T, YDE STEENSMA H, VAN DIJKEN J P.Pyruvate metabolism in Saccharomyces cerevisiae[J].Yeast, 1996, 12(16):1607-1633.
[16] TRONCHONI J, GONZALEZ R, GUINDAL A M, et al.Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions[J].Food Microbiology, 2022, 101:103893.
[17] 郭伟. 代谢工程改造酿酒酵母生产酪醇及红景天苷的研究[D].济南:山东大学, 2020.
GUO W.Studies on metabolic engineering of Saccharomyces cerevisiae for the production of tyrosol and salidroside[D].Jinan:Shandong University, 2020.
[18] BROCHADO A R, MATOS C, MØLLER B L, et al.Improved vanillin production in baker’s yeast through in silico design[J].Microbial Cell Factories, 2010, 9:84.
[19] OUD B, FLORES C L, GANCEDO C, et al.An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae[J].Microbial Cell Factories, 2012, 11:131.
[20] ZHANG Y M, LIU G D, ENGQVIST M K M, et al.Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain[J].Microbial Cell Factories, 2015, 14:116.
[21] DAI Z J, HUANG M T, CHEN Y, et al.Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative[J].Nature Communications, 2018, 9(1):3059.
[22] YU T, ZHOU Y J, HUANG M T, et al.Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis[J].Cell, 2018, 174(6):1549-1558.
[23] ZHAO X D, PROCOPIO S, BECKER T.Flavor impacts of glycerol in the processing of yeast fermented beverages:A review[J].Journal of Food Science and Technology, 2015, 52(12):7588-7598.
[24] LUYTEN K, ALBERTYN J, SKIBBE W F, et al.Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress[J].The EMBO Journal, 1995, 14(7):1360-1371.
[25] ANSELL R, GRANATH K, HOHMANN S, et al.The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J].The EMBO Journal, 1997, 16(9):2179-2187.
[26] HUBMANN G, GUILLOUET S, NEVOIGT E.Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2011, 77(17):5857-5867.
[27] REMIZE F, BARNAVON L, DEQUIN S.Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae[J].Metabolic Engineering, 2001, 3(4):301-312.
[28] REMIZE F, CAMBON B, BARNAVON L, et al.Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway[J].Yeast, 2003, 20(15):1243-1253.
[29] GRAUSLUND M, RØNNOW B.Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae[J].Canadian Journal of Microbiology, 2000, 46(12):1096-1100.
[30] VARELA C, KUTYNA D R, SOLOMON M R, et al.Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts[J].Applied and Environmental Microbiology, 2012, 78(17):6068-6077.
[31] SELECKÝ R, ŠMOGROVIČOVÁ D, SULO P.Beer with reduced ethanol content produced using Saccharomyces cerevisiae yeasts deficient in various tricarboxylic acid cycle enzymes[J].Journal of the Institute of Brewing, 2008, 114(2):97-101.
[32] LILLY M, LAMBRECHTS M G, PRETORIUS I S.Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates[J].Applied and Environmental Microbiology, 2000, 66(2):744-753.
[33] KRUIS A J, GALLONE B, JONKER T, et al.Contribution of Eat1 and other alcohol acyltransferases to ester production in Saccharomyces cerevisiae[J].Frontiers in Microbiology, 2018, 9:3202.
[34] WANG X D, SHEN K, TANG S P, et al.Study on the construction and aroma-producing characteristics of the recombinant Saccharomyces cerevisiae strain W303-EAT[J].European Food Research and Technology, 2022, 248(2):447-456.
[35] PARK Y C, SHAFFER C E H, BENNETT G N.Microbial formation of esters[J].Applied Microbiology and Biotechnology, 2009, 85(1):13-25.
[36] KRUIS A J, LEVISSON M, MARS A E, et al.Ethyl acetate production by the elusive alcohol acetyltransferase from yeast[J].Metabolic Engineering, 2017, 41:92-101.
[37] LI T, LIU G S, ZHOU W, et al.Metabolic engineering of Saccharomyces cerevisiae to overproduce squalene[J].Journal of Agricultural and Food Chemistry, 2020, 68(7):2132-2138.
[38] LIU Y Q, BAI C X, LIU Q, et al.Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast[J].Metabolic Engineering, 2019, 54:275-284.
[39] XU Y Y, LI Z M.Utilization of ethanol for itaconic acid biosynthesis by engineered Saccharomyces cerevisiae[J].FEMS Yeast Research, 2021, 21(6):foab043.
[40] TILLOY V, ORTIZ-JULIEN A, DEQUIN S.Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions[J].Applied and Environmental Microbiology, 2014, 80(8):2623-2632.
[41] 冯文倩. 低产乙醇本土非酿酒酵母的选育[D].杨凌:西北农林科技大学, 2021.
FENG W Q.Breeding of native Non-Saccharomyces cerevisiae with low ethanol yield[D].Yangling:Northwest A & F University, 2021.
[42] 于淼, 李洁, 李凯, 等.丙酮酸脱氢酶基因敲除酿酒酵母发酵低醇葡萄酒工艺条件的研究[J].井冈山大学学报(自然科学版), 2016, 37(6):36-41;47.
YU M, LI J, LI K, et al.Study of fermentation process conditions of low-alcohol wine by the pyruvate dehydrogenase gene knock-out mutant Saccharomyces cerevisiae[J].Journal of Jinggangshan University (Natural Science), 2016, 37(6):36-41;47.
[43] DELLOMONACO C, FAVA F, GONZALEZ R.The path to next generation biofuels:Successes and challenges in the era of synthetic biology[J].Microbial Cell Factories, 2010, 9:3.
[44] CHATSURACHAI S, WATANAROJANAPORN N, PHAENGTHAI S, et al.Genetic variation in genes involved in ethanol production among Saccharomyces cerevisiae strains[J].Sugar Tech, 2020, 22(2):250-258.
[45] NAGHSHBANDI M P, TABATABAEI M, AGHBASHLO M, et al.Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches[J].Renewable and Sustainable Energy Reviews, 2019, 115:109353.
[46] XIA X K, ZHANG Y E, LEI S J, et al.Identification and iterative combinatorial mutagenesis of a new naringinase-producing strain, Aspergillus tubingensis MN589840[J].Letters in Applied Microbiology, 2021, 72(2):141-148.
[47] SUN X M, REN L J, BI Z Q, et al.Adaptive evolution of microalgae Schizochytrium sp.under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis[J].Bioresource Technology, 2018, 267:438-444.
[48] WAGNER J M, LIU L Q, YUAN S F, et al.A comparative analysis of single cell and droplet-based FACS for improving production phenotypes:Riboflavin overproduction in Yarrowia lipolytica[J].Metabolic Engineering, 2018, 47:346-356.
[49] JIA Y L, LI J, NONG F T, et al.Application of adaptive laboratory evolution in lipid and terpenoid production in yeast and microalgae[J].ACS Synthetic Biology, 2023, 12(5):1396-1407.
[50] PATIL K R, RALSER M.Freeing yeast from alcohol addiction (just) to make (it) fat instead[J].Cell, 2018, 174(6):1342-1344.
[51] CAKAR Z P, TURANLI-YILDIZ B, ALKIM C, et al.Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties[J].FEMS Yeast Research, 2012, 12(2):171-182.
[52] WANG Q, JIN W B, HAN W, et al.Enhancement of DHA production from Aurantiochytrium sp.by atmospheric and room temperature plasma mutagenesis aided with microbial microdroplet culture screening[J].Biomass Conversion and Biorefinery, 2023, 13(18):16807-16818.
[53] YANG T Y, ZHANG S S, PAN Y R, et al.Breeding of high-tolerance yeast by adaptive evolution and high-gravity brewing of mutant[J].Journal of the Science of Food and Agriculture, 2024, 104(2):686-697.
[54] 陈碧燕, 文李.酿酒酵母全基因组学及其应用研究进展[J].食品与机械, 2020, 36(11):223-227;232.
CHEN B Y, WEN L.Progress in Saccharomyces cerevisiae genome research and relative application[J].Food & Machinery, 2020, 36(11):223-227;232.
[55] MOLINA-ESPEJA P.Next generation winemakers:Genetic engineering in Saccharomyces cerevisiae for trendy challenges[J].Bioengineering, 2020, 7(4):128.
[56] JESSOP-FABRE M M, JAKOČIŪNAS T, STOVICEK V, et al.EasyClone-MarkerFree:A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9[J].Biotechnology Journal, 2016, 11(8):1110-1117.
[57] 高莹莹. 低醇葡萄酒酵母菌株的选育[D].天津:天津科技大学, 2020.
GAO Y Y.Breeding of low-ethanol-wine yeasts[D].Tianjin:Tianjin University of Science & Technology, 2020.
[58] YANG P Z, JIANG S Y, JIANG S W, et al.CRISPR-Cas9 approach constructed engineered Saccharomyces cerevisiae with the deletion of GPD2, FPS1, and ADH2 to enhance the production of ethanol[J].Journal of Fungi, 2022, 8(7):703.
[59] ZHANG W, KANG J, WANG C L, et al.Effects of pyruvate decarboxylase (pdc 1, pdc 5) gene knockout on the production of metabolites in two haploid Saccharomyces cerevisiae strains[J].Preparative Biochemistry & Biotechnology, 2022, 52(1):62-69.
[60] LANE S, TURNER T L, JIN Y S.Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae[J].Biotechnology Journal, 2023, 18(4):e2200535.
[61] ROUSHAN M R, SHAO S, POLEDRI I, et al.Increased Agrobacterium-mediated transformation of Saccharomyces cerevisiae after deletion of the yeast ADA2 gene[J].Letters in Applied Microbiology, 2022, 74(2):228-237.
[62] CUELLO R A, FLORES MONTERO K J, MERCADO L A, et al.Construction of low-ethanol-wine yeasts through partial deletion of the Saccharomyces cerevisiae PDC2 gene[J].AMB Express, 2017, 7(1):67.
[63] YAMADA R, WAKITA K, MITSUI R, et al.Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway[J].Biotechnology and Bioengineering, 2017, 114(9):2075-2084.
[64] DREWKE C, THIELEN J, CIRIACY M.Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae[J].Journal of Bacteriology, 1990, 172(7):3909-3917.
[65] ITO Y, HIRASAWA T, SHIMIZU H.Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling[J].Bioscience, Biotechnology, and Biochemistry, 2014, 78(1):151-159.
[66] TING T Y, LI Y D, BUNAWAN H, et al.Current advancements in systems and synthetic biology studies of Saccharomyces cerevisiae[J].Journal of Bioscience and Bioengineering, 2023, 135(4):259-265.
[67] MENG J, QIU Y, ZHANG Y P, et al.CMI:CRISPR/Cas9 based efficient multiplexed integration in Saccharomyces cerevisiae[J].ACS Synthetic Biology, 2023, 12(5):1408-1414.
[68] DARVISHI F, RAFATIYAN S, ABBASPOUR MOTLAGH MOGHADDAM M H, et al.Applications of synthetic yeast consortia for the production of native and non-native chemicals[J].Critical Reviews in Biotechnology, 2024, 44(1):15-30.
Outlines

/