[1] GUINDAL A M, MORALES P, TRONCHONI J, et al.Reduction of ethanol content in wine with an improved combination of yeast strains and process conditions[J].Food Microbiology, 2023, 115:104344.
[2] ABREU T, PERESTRELO R, BORDIGA M, et al.The flavor chemistry of fortified wines-a comprehensive approach[J].Foods, 2021, 10(6):1239.
[3] JONES-MOORE H R, JELLEY R, MARANGON M, et al.The polysaccharides of winemaking:From grape to wine[J].Trends in Food Science and Technology, 2021, 111:731-740.
[4] ENGLEZOS V, CRAVERO F, TORCHIO F, et al.Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae[J].Food Microbiology, 2018, 69:179-188.
[5] LAHTINEN H, MOUSTGAARD H, RIPATTI S, et al.Association between genetic risk of alcohol consumption and alcohol-related morbidity and mortality under different alcohol policy conditions:Evidence from the Finnish alcohol price reduction of 2004[J].Addiction, 2023, 118(4):678-685.
[6] CANONICO L, COMITINI F, CIANI M.Metschnikowia pulcherrima selected strain for ethanol reduction in wine:Influence of cell immobilization and aeration condition[J].Foods, 2019, 8(9):378.
[7] MULERO-CEREZO J, TUÑÓN-MOLINA A, CANO-VICENT A, et al.Alcoholic and non-alcoholic rosé wines made with Saccharomyces cerevisiae var.boulardii probiotic yeast[J].Archives of Microbiology, 2023, 205(5):201.
[8] HENDERSON C M, BLOCK D E.Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2014, 80(10):2966-2972.
[9] ROLLE L, ENGLEZOS V, TORCHIO F, et al.Alcohol reduction in red wines by technological and microbiological approaches:A comparative study[J].Australian Journal of Grape and Wine Research, 2018, 24(1):62-74.
[10] TILLOY V, CADIÈRE A, EHSANI M, et al.Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae[J].International Journal of Food Microbiology, 2015, 213:49-58.
[11] DUNCAN J D, SETATI M E, DIVOL B.Redox cofactor metabolism in Saccharomyces cerevisiae and its impact on the production of alcoholic fermentation end-products[J].Food Research International, 2023, 163:112276.
[12] SABATER-MUÑOZ B, MATTENBERGER F, FARES M A, et al.Transcriptional rewiring, adaptation, and the role of gene duplication in the metabolism of ethanol of Saccharomyces cerevisiae[J].mSystems, 2020, 5(4):e00416-e00420.
[13] HA S J, GALAZKA J M, KIM S R, et al.Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2):504-509.
[14] SHARMA S, TAURO P.Control of ethanol production by yeast:Role of pyruvate decarboxylase and alcohol dehydrogenase[J].Biotechnology Letters, 1986, 8(10):735-738.
[15] PRONK J T, YDE STEENSMA H, VAN DIJKEN J P.Pyruvate metabolism in Saccharomyces cerevisiae[J].Yeast, 1996, 12(16):1607-1633.
[16] TRONCHONI J, GONZALEZ R, GUINDAL A M, et al.Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions[J].Food Microbiology, 2022, 101:103893.
[17] 郭伟. 代谢工程改造酿酒酵母生产酪醇及红景天苷的研究[D].济南:山东大学, 2020.
GUO W.Studies on metabolic engineering of Saccharomyces cerevisiae for the production of tyrosol and salidroside[D].Jinan:Shandong University, 2020.
[18] BROCHADO A R, MATOS C, MØLLER B L, et al.Improved vanillin production in baker’s yeast through in silico design[J].Microbial Cell Factories, 2010, 9:84.
[19] OUD B, FLORES C L, GANCEDO C, et al.An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae[J].Microbial Cell Factories, 2012, 11:131.
[20] ZHANG Y M, LIU G D, ENGQVIST M K M, et al.Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain[J].Microbial Cell Factories, 2015, 14:116.
[21] DAI Z J, HUANG M T, CHEN Y, et al.Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative[J].Nature Communications, 2018, 9(1):3059.
[22] YU T, ZHOU Y J, HUANG M T, et al.Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis[J].Cell, 2018, 174(6):1549-1558.
[23] ZHAO X D, PROCOPIO S, BECKER T.Flavor impacts of glycerol in the processing of yeast fermented beverages:A review[J].Journal of Food Science and Technology, 2015, 52(12):7588-7598.
[24] LUYTEN K, ALBERTYN J, SKIBBE W F, et al.Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress[J].The EMBO Journal, 1995, 14(7):1360-1371.
[25] ANSELL R, GRANATH K, HOHMANN S, et al.The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J].The EMBO Journal, 1997, 16(9):2179-2187.
[26] HUBMANN G, GUILLOUET S, NEVOIGT E.Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2011, 77(17):5857-5867.
[27] REMIZE F, BARNAVON L, DEQUIN S.Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae[J].Metabolic Engineering, 2001, 3(4):301-312.
[28] REMIZE F, CAMBON B, BARNAVON L, et al.Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway[J].Yeast, 2003, 20(15):1243-1253.
[29] GRAUSLUND M, RØNNOW B.Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae[J].Canadian Journal of Microbiology, 2000, 46(12):1096-1100.
[30] VARELA C, KUTYNA D R, SOLOMON M R, et al.Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts[J].Applied and Environmental Microbiology, 2012, 78(17):6068-6077.
[31] SELECKÝ R, MOGROVIČOVÁ D, SULO P.Beer with reduced ethanol content produced using Saccharomyces cerevisiae yeasts deficient in various tricarboxylic acid cycle enzymes[J].Journal of the Institute of Brewing, 2008, 114(2):97-101.
[32] LILLY M, LAMBRECHTS M G, PRETORIUS I S.Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates[J].Applied and Environmental Microbiology, 2000, 66(2):744-753.
[33] KRUIS A J, GALLONE B, JONKER T, et al.Contribution of Eat1 and other alcohol acyltransferases to ester production in Saccharomyces cerevisiae[J].Frontiers in Microbiology, 2018, 9:3202.
[34] WANG X D, SHEN K, TANG S P, et al.Study on the construction and aroma-producing characteristics of the recombinant Saccharomyces cerevisiae strain W303-EAT[J].European Food Research and Technology, 2022, 248(2):447-456.
[35] PARK Y C, SHAFFER C E H, BENNETT G N.Microbial formation of esters[J].Applied Microbiology and Biotechnology, 2009, 85(1):13-25.
[36] KRUIS A J, LEVISSON M, MARS A E, et al.Ethyl acetate production by the elusive alcohol acetyltransferase from yeast[J].Metabolic Engineering, 2017, 41:92-101.
[37] LI T, LIU G S, ZHOU W, et al.Metabolic engineering of Saccharomyces cerevisiae to overproduce squalene[J].Journal of Agricultural and Food Chemistry, 2020, 68(7):2132-2138.
[38] LIU Y Q, BAI C X, LIU Q, et al.Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast[J].Metabolic Engineering, 2019, 54:275-284.
[39] XU Y Y, LI Z M.Utilization of ethanol for itaconic acid biosynthesis by engineered Saccharomyces cerevisiae[J].FEMS Yeast Research, 2021, 21(6):foab043.
[40] TILLOY V, ORTIZ-JULIEN A, DEQUIN S.Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions[J].Applied and Environmental Microbiology, 2014, 80(8):2623-2632.
[41] 冯文倩. 低产乙醇本土非酿酒酵母的选育[D].杨凌:西北农林科技大学, 2021.
FENG W Q.Breeding of native Non-Saccharomyces cerevisiae with low ethanol yield[D].Yangling:Northwest A & F University, 2021.
[42] 于淼, 李洁, 李凯, 等.丙酮酸脱氢酶基因敲除酿酒酵母发酵低醇葡萄酒工艺条件的研究[J].井冈山大学学报(自然科学版), 2016, 37(6):36-41;47.
YU M, LI J, LI K, et al.Study of fermentation process conditions of low-alcohol wine by the pyruvate dehydrogenase gene knock-out mutant Saccharomyces cerevisiae[J].Journal of Jinggangshan University (Natural Science), 2016, 37(6):36-41;47.
[43] DELLOMONACO C, FAVA F, GONZALEZ R.The path to next generation biofuels:Successes and challenges in the era of synthetic biology[J].Microbial Cell Factories, 2010, 9:3.
[44] CHATSURACHAI S, WATANAROJANAPORN N, PHAENGTHAI S, et al.Genetic variation in genes involved in ethanol production among Saccharomyces cerevisiae strains[J].Sugar Tech, 2020, 22(2):250-258.
[45] NAGHSHBANDI M P, TABATABAEI M, AGHBASHLO M, et al.Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches[J].Renewable and Sustainable Energy Reviews, 2019, 115:109353.
[46] XIA X K, ZHANG Y E, LEI S J, et al.Identification and iterative combinatorial mutagenesis of a new naringinase-producing strain, Aspergillus tubingensis MN589840[J].Letters in Applied Microbiology, 2021, 72(2):141-148.
[47] SUN X M, REN L J, BI Z Q, et al.Adaptive evolution of microalgae Schizochytrium sp.under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis[J].Bioresource Technology, 2018, 267:438-444.
[48] WAGNER J M, LIU L Q, YUAN S F, et al.A comparative analysis of single cell and droplet-based FACS for improving production phenotypes:Riboflavin overproduction in Yarrowia lipolytica[J].Metabolic Engineering, 2018, 47:346-356.
[49] JIA Y L, LI J, NONG F T, et al.Application of adaptive laboratory evolution in lipid and terpenoid production in yeast and microalgae[J].ACS Synthetic Biology, 2023, 12(5):1396-1407.
[50] PATIL K R, RALSER M.Freeing yeast from alcohol addiction (just) to make (it) fat instead[J].Cell, 2018, 174(6):1342-1344.
[51] CAKAR Z P, TURANLI-YILDIZ B, ALKIM C, et al.Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties[J].FEMS Yeast Research, 2012, 12(2):171-182.
[52] WANG Q, JIN W B, HAN W, et al.Enhancement of DHA production from Aurantiochytrium sp.by atmospheric and room temperature plasma mutagenesis aided with microbial microdroplet culture screening[J].Biomass Conversion and Biorefinery, 2023, 13(18):16807-16818.
[53] YANG T Y, ZHANG S S, PAN Y R, et al.Breeding of high-tolerance yeast by adaptive evolution and high-gravity brewing of mutant[J].Journal of the Science of Food and Agriculture, 2024, 104(2):686-697.
[54] 陈碧燕, 文李.酿酒酵母全基因组学及其应用研究进展[J].食品与机械, 2020, 36(11):223-227;232.
CHEN B Y, WEN L.Progress in Saccharomyces cerevisiae genome research and relative application[J].Food & Machinery, 2020, 36(11):223-227;232.
[55] MOLINA-ESPEJA P.Next generation winemakers:Genetic engineering in Saccharomyces cerevisiae for trendy challenges[J].Bioengineering, 2020, 7(4):128.
[56] JESSOP-FABRE M M, JAKOČIŪNAS T, STOVICEK V, et al.EasyClone-MarkerFree:A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9[J].Biotechnology Journal, 2016, 11(8):1110-1117.
[57] 高莹莹. 低醇葡萄酒酵母菌株的选育[D].天津:天津科技大学, 2020.
GAO Y Y.Breeding of low-ethanol-wine yeasts[D].Tianjin:Tianjin University of Science & Technology, 2020.
[58] YANG P Z, JIANG S Y, JIANG S W, et al.CRISPR-Cas9 approach constructed engineered Saccharomyces cerevisiae with the deletion of GPD2, FPS1, and ADH2 to enhance the production of ethanol[J].Journal of Fungi, 2022, 8(7):703.
[59] ZHANG W, KANG J, WANG C L, et al.Effects of pyruvate decarboxylase (pdc 1, pdc 5) gene knockout on the production of metabolites in two haploid Saccharomyces cerevisiae strains[J].Preparative Biochemistry & Biotechnology, 2022, 52(1):62-69.
[60] LANE S, TURNER T L, JIN Y S.Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae[J].Biotechnology Journal, 2023, 18(4):e2200535.
[61] ROUSHAN M R, SHAO S, POLEDRI I, et al.Increased Agrobacterium-mediated transformation of Saccharomyces cerevisiae after deletion of the yeast ADA2 gene[J].Letters in Applied Microbiology, 2022, 74(2):228-237.
[62] CUELLO R A, FLORES MONTERO K J, MERCADO L A, et al.Construction of low-ethanol-wine yeasts through partial deletion of the Saccharomyces cerevisiae PDC2 gene[J].AMB Express, 2017, 7(1):67.
[63] YAMADA R, WAKITA K, MITSUI R, et al.Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway[J].Biotechnology and Bioengineering, 2017, 114(9):2075-2084.
[64] DREWKE C, THIELEN J, CIRIACY M.Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae[J].Journal of Bacteriology, 1990, 172(7):3909-3917.
[65] ITO Y, HIRASAWA T, SHIMIZU H.Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling[J].Bioscience, Biotechnology, and Biochemistry, 2014, 78(1):151-159.
[66] TING T Y, LI Y D, BUNAWAN H, et al.Current advancements in systems and synthetic biology studies of Saccharomyces cerevisiae[J].Journal of Bioscience and Bioengineering, 2023, 135(4):259-265.
[67] MENG J, QIU Y, ZHANG Y P, et al.CMI:CRISPR/Cas9 based efficient multiplexed integration in Saccharomyces cerevisiae[J].ACS Synthetic Biology, 2023, 12(5):1408-1414.
[68] DARVISHI F, RAFATIYAN S, ABBASPOUR MOTLAGH MOGHADDAM M H, et al.Applications of synthetic yeast consortia for the production of native and non-native chemicals[J].Critical Reviews in Biotechnology, 2024, 44(1):15-30.