Research progress on mechanism of polysaccharide degradation by H2O2 and structure-activity relationship of degradation products

  • PENG Qian ,
  • ZHOU Pengcheng ,
  • XU Tongcheng ,
  • LI Fujun ,
  • ZONG Aizhen
Expand
  • 1(College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China)
    2(Shandong Academy of Agricultural Sciences, Jinan 250000, China)

Received date: 2023-11-03

  Revised date: 2023-12-13

  Online published: 2024-10-29

Abstract

Polysaccharide has attracted much attention because of its excellent biological activity, but it is difficult to be directly utilized by the human body because of its macromolecular structure.In recent years, research on the degradation of polysaccharides has become a new hotspot.There are many ways to degrade polysaccharides, among which the free radical degradation of polysaccharides has the unique advantages of controllability of degradation degree and low production cost.Therefore, it is necessary to understand the degradation mechanism of polysaccharides and explore the structure-activity relationship of degradation products to utilize polysaccharides with high value.This paper first systematically and comprehensively introduced the research progress of free radical generation by H2O2 and then mediated polysaccharide degradation, focusing on the mechanism of free radical generation by H2O2, then analyzed the mechanism of free radical degradation of polysaccharide, and finally analyzed the effect of free radical on the structure-activity relationship of polysaccharide degradation products.This review provides theoretical basis for the analysis of biostructure-activity relationship and the development of high value of polysaccharide degradation products.

Cite this article

PENG Qian , ZHOU Pengcheng , XU Tongcheng , LI Fujun , ZONG Aizhen . Research progress on mechanism of polysaccharide degradation by H2O2 and structure-activity relationship of degradation products[J]. Food and Fermentation Industries, 2024 , 50(19) : 353 -360 . DOI: 10.13995/j.cnki.11-1802/ts.037846

References

[1] KAKAR M U, NAVEED M, SAEED M, et al.A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja[J].International Journal of Biological Macromolecules, 2020, 156:420-429.
[2] 李艳, 宁厚齐, 李迎秋.海藻渣中岩藻聚糖硫酸酯提取工艺优化[J].轻工学报, 2020, 35(6):9-15.
LI Y, NING H Q, LI Y Q.Optimization of extraction process of fucoidan sulfate from seaweed residue[J].Journal of Light Industry, 2020, 35(6):9-15.
[3] 冀晓龙, 尹明松, 侯春彦, 等.红枣多糖提取、分离纯化及生物活性研究进展[J].食品工业科技, 2020, 41(23):346-353;358.
JI X L, YIN M S, HOU C Y, et al.Recent advances in jujube (Zizyphus jujuba mill.) polysaccharides:Extraction, isolation and purification and bioactivities[J].Science and Technology of Food Industry, 2020, 41(23):346-353;358.
[4] XU S Y, HUANG X S, CHEONG K L.Recent advances in marine algae polysaccharides:Isolation, structure, and activities[J].Marine Drugs, 2017, 15(12):388.
[5] YUAN S W, WANG J H, LI X, et al.Study on the structure, antioxidant activity and degradation pattern of polysaccharides isolated from lotus seedpod[J].Carbohydrate Polymers, 2023, 316:121065.
[6] LIU X P, REN Z, YU R H, et al.Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J].International Journal of Biological Macromolecules, 2021, 166:1396-1408.
[7] LI X J, CHEN Y N, SONG L H, et al.Partial enzymolysis affects the digestion of tamarind seed polysaccharides in vitro:Degradation accelerates and gut microbiota regulates[J].International Journal of Biological Macromolecules, 2023, 237:124175.
[8] SU Y, LI H X, HU Z Y, et al.Research on degradation of polysaccharides during Hericium erinaceus fermentation[J].LWT, 2023, 173:114276.
[9] YANG H H, BAI J W, MA C L, et al.Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L[J].International Journal of Biological Macromolecules, 2020, 165:738-746.
[10] WANG Z C, ZHOU X Y, SHENG L L, et al.Effect of ultrasonic degradation on the structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides:A review[J].International Journal of Biological Macromolecules, 2023, 236:123924.
[11] CHEN X Y, SUN-WATERHOUSE D, YAO W Z, et al.Free radical-mediated degradation of polysaccharides:Mechanism of free radical formation and degradation, influence factors and product properties[J].Food Chemistry, 2021, 365:130524.
[12] FENTON H J H.Oxidation of tartaric acid in presence of iron[J].Journal of Chilean Chemical Society, 1894, 65:899-910.
[13] ZHU Y P, ZHU R L, XI Y F, et al.Strategies for enhancing the heterogeneous Fenton catalytic reactivity:A review[J].Applied Catalysis B:Environmental, 2019, 255:117739.
[14] BOKARE A D, CHOI W.Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J].Journal of Hazardous Materials, 2014, 275:121-135.
[15] FLORENCE T M.The production of hydroxyl radical from hydrogen peroxide[J].Journal of Inorganic Biochemistry, 1984, 22(4):221-230.
[16] NAPPI A J, VASS E.Hydroxyl radical production by ascorbate and hydrogen peroxide[J].Neurotoxicity Research, 2000, 2(4):343-355.
[17] MA C L, BAI J W, SHAO C T, et al.Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products[J].Food Research International, 2021, 143:110281.
[18] MOU J J, WANG C, LI Q, et al.Preparation and antioxidant properties of low molecular holothurian glycosaminoglycans by H2O2/ascorbic acid degradation[J].International Journal of Biological Macromolecules, 2018, 107(Pt A):1339-1347.
[19] SHI M J, WEI X Y, XU J, et al.Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity[J].Food Chemistry, 2017, 215:76-83.
[20] WANG M Z, WANG J, FU L L, et al.Degradation of polysaccharides from Lycium barbarum L.leaves improves bioaccessibility and gastrointestinal transport of endogenous minerals[J].International Journal of Biological Macromolecules, 2020, 143:76-84.
[21] ZHANG Z S, WANG X M, ZHAO M X, et al.Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis[J].Carbohydrate Polymers, 2014, 112:578-582.
[22] QIU J Q, ZHANG H, WANG Z Y.Ultrasonic degradation of Polysaccharides from Auricularia auricula and the antioxidant activity of their degradation products[J].LWT, 2019, 113:108266.
[23] CHEUNG Y C, YIN J Y, WU J Y.Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J].Carbohydrate Polymers, 2018, 195:298-302.
[24] LI J H, LI S, LIU S S, et al.Pectic oligosaccharides hydrolyzed from citrus canning processing water by Fenton reaction and their antiproliferation potentials[J].International Journal of Biological Macromolecules, 2019, 124:1025-1032.
[25] XIONG F, LI X, ZHENG L H, et al.Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods[J].Carbohydrate Polymers, 2019, 218:46-52.
[26] RAHDAR S, IGWEGBE C A, GHASEMI M, et al.Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2)[J].MethodsX, 2019, 6:492-499.
[27] CHEN L W, CAI T M, CHENG C, et al.Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems:A comparative study[J].Chemical Engineering Journal, 2018, 351:1137-1146.
[28] YAO W Z, LIU M Y, CHEN X Y, et al.Effects of UV/H2O2 degradation and step gradient ethanol precipitation on Sargassum fusiforme polysaccharides:Physicochemical characterization and protective effects against intestinal epithelial injury[J].Food Research International, 2022, 155:111093.
[29] CAO J, YANG J, YUE K T, et al.Preparation of modified citrus pectin (MCP) using an advanced oxidation process with hydroxyl radicals generated by UV-H2O2[J].Food Hydrocolloids, 2020, 102:105587.
[30] CHEN S J, LIU H, YANG X Q, et al.Degradation of sulphated polysaccharides from Grateloupia livida and antioxidant activity of the degraded components[J].International Journal of Biological Macromolecules, 2020, 156:660-668.
[31] MEIER K K, JONES S M, KAPER T, et al.Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars[J].Chemical Reviews, 2018, 118(5):2593-2635.
[32] SCHWEIKERT C, LISZKAY A, SCHOPFER P.Polysaccharide degradation by Fenton reaction- or peroxidase-generated hydroxyl radicals in isolated plant cell walls[J].Phytochemistry, 2002, 61(1):31-35.
[33] MISHIN V, HECK D E, LASKIN D L, et al.The amplex red/horseradish peroxidase assay requires superoxide dismutase to measure hydrogen peroxide in the presence of NAD(P)H[J].Free Radical Research, 2020, 54(8-9):620-628.
[34] WEI R, WANG P, ZHANG G S, et al.Microwave-responsive catalysts for wastewater treatment:A review[J].Chemical Engineering Journal, 2020, 382:122781.
[35] WU J W, LI P, TAO D B, et al.Effect of solution plasma process with hydrogen peroxide on the degradation and antioxidant activity of polysaccharide from Auricularia auricula[J].International Journal of Biological Macromolecules, 2018, 117:1299-1304.
[36] CHEN S K, WANG X, GUO Y Q, et al.Exploring the partial degradation of polysaccharides:Structure, mechanism, bioactivities, and perspectives[J].Comprehensive Reviews in Food Science and Food Safety, 2023, 22(6):4831-4870.
[37] DAI Y J, SHAO C F, PIAO Y G, et al.The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical[J].Carbohydrate Polymers, 2017, 178:34-40.
[38] LINDSAY S E, FRY S C.Redox and Wall-restructuring[M]//The Expanding Cell. Berlin Heidelberg Springer, 2006:159-190.
[39] HU W W, CHEN S G, WU D M, et al.Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system:Chemical and microstructural analysis[J].Ultrasonics Sonochemistry, 2019, 58:104576.
[40] WANG W X, FANG S P, XIONG Z X.Protective effect of polysaccharide from Ligusticum chuanxiong hort against H2O2-induced toxicity in zebrafish embryo[J].Carbohydrate Polymers, 2019, 221:73-83.
[41] CHEN H Y, QIN J, HU Y.Efficient degradation of high-molecular-weight hyaluronic acid by a combination of ultrasound, hydrogen peroxide, and copper ion[J].Molecules, 2019, 24(3):617.
[42] BOUTITI A, ZOUAGHI R, BENDJABEUR S E, et al.Photodegradation of 1-hexyl-3-methylimidazolium by UV/H2O2 and UV/TiO2:Influence of pH and chloride[J].Journal of Photochemistry and Photobiology A:Chemistry, 2017, 336:164-169.
[43] TANG Y, LIU H, ZHOU L, et al.Enhanced Fenton-like oxidation of hydroxypropyl guar gum catalyzed by EDTA-metal complexes in a wide pH range[J].Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2019, 79(9):1667-1674.
[44] LONG X S, HU X, XIANG H, et al.Structural characterization and hypolipidemic activity of Gracilaria lemaneiformis polysaccharide and its degradation products[J].Food Chemistry:X, 2022, 14:100314.
[45] LIANG S, LIAO W Z, MA X, et al.H2O2 oxidative preparation, characterization and antiradical activity of a novel oligosaccharide derived from flaxseed gum[J].Food Chemistry, 2017, 230:135-144.
[46] SHEN X M, LIU Z F, LI J H, et al.Development of low molecular weight heparin by H2O2/ascorbic acid with ultrasonic power and its anti-metastasis property[J].International Journal of Biological Macromolecules, 2019, 133:101-109.
[47] LIN S Z, AL-WRAIKAT M, NIU L R, et al.Degradation enhances the anticoagulant and antiplatelet activities of polysaccharides from Lycium barbarum L.leaves[J].International Journal of Biological Macromolecules, 2019, 133:674-682.
[48] CHANG S C, HSU B Y, CHEN B H.Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity[J].International Journal of Biological Macromolecules, 2010, 47(4):445-453.
[49] YANG J, WANG Y H, JIANG T F, et al.Depolymerized glycosaminoglycan and its anticoagulant activities from sea cucumber Apostichopus japonicus[J].International Journal of Biological Macromolecules, 2015, 72:699-705.
[50] LI J H, LI S, WU L M, et al.Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity[J].Carbohydrate Polymers, 2019, 209:82-91.
[51] AL-WRAIKAT M, LIU Y, WU L M, et al.Structural characterization of degraded Lycium barbarum L.leaves’ polysaccharide using ascorbic acid and hydrogen peroxide[J].Polymers, 2022, 14(7):1404.
[52] HOU N N, ZHANG M, XU Y J, et al.Polysaccharides and their depolymerized fragments from Costaria costata:Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities[J].International Journal of Biological Macromolecules, 2017, 105:1511-1518.
[53] XU Y Q, NIU X J, LIU N Y, et al.Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits[J].Food Chemistry, 2018, 243:26-35.
[54] CHAOUCH M A, HAFSA J, RIHOUEY C, et al.Depolymerization of polysaccharides from Opuntia ficus indica:Antioxidant and antiglycated activities[J].International Journal of Biological Macromolecules, 2015, 79:779-786.
[55] CHEN B J, SHI M J, CUI S, et al.Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation[J].International Journal of Biological Macromolecules, 2016, 92:715-722.
Outlines

/