Fermentation process of rose black tea and non-targeted metabolomics analysis of water extract and evaluation of antioxidant activity in vitro

  • ZHANG Fei ,
  • LI Yujing ,
  • PENG Chunxiu ,
  • GONG Jiashun
Expand
  • 1(College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China)
    2(College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China)
    3(Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China)

Received date: 2023-11-23

  Revised date: 2023-12-21

  Online published: 2024-11-01

Abstract

To investigate the changes in metabolites and antioxidant activity of fresh roses before and after fermentation, the processing technology of rose a uniform design test optimised black tea.The main components of dried rose petal water extract (RWE) and rose black tea aqueous extract (RBTE) were determined before and after fermentation.Their antioxidant capacity was evaluated in vitro.Non-targeted metabolomics was also used to analyse changes in metabolites.Results showed that the optimum processing technology of rose black tea was the withering time of 22 h, fermentation temperature of 31 ℃, and fermentation time of 8 h.RBTE contents of total polyphenols and polysaccharides were significantly higher than that of RWE.Contents of anthocyanins and free amino acids were significantly lower than that of RWE (P<0.05).Non-targeted metabolomics analysis identified 2 028 metabolites in rose extracts before and after fermentation.A total of 24 significantly different metabolites were screened.It was found that the contents of chicory, inosine, and harmine increased after rose fermentation, which gave rose black tea a unique flavour, physiological regulation, antioxidant, and anti-inflammatory functions.The KEGG enrichment analysis of differential metabolites revealed that the processing of rose black tea had a significant impact on amino acids, affecting the taste quality of the tea.At the same time, it was found that RBTE showed strong DPPH free radical and hydroxyl radical scavenging ability, indicating that fermentation helped enhance the antioxidant activity of roses.The results can provide a theoretical basis for rose black tea′s functional activity research and product development.

Cite this article

ZHANG Fei , LI Yujing , PENG Chunxiu , GONG Jiashun . Fermentation process of rose black tea and non-targeted metabolomics analysis of water extract and evaluation of antioxidant activity in vitro[J]. Food and Fermentation Industries, 2024 , 50(20) : 216 -225 . DOI: 10.13995/j.cnki.11-1802/ts.038051

References

[1] 鲁雷震, 贾紫伟, 封成玲, 等. 玫瑰植物中活性物质及其功效研究进展. 食品研究与开发, 2021, 42(20): 206-213.
LU L Z, JIA Z W, FENG C L, et al. Review of biologically active substances in rose plants and their functions. Food Research and Development, 2021, 42(20): 206-213.
[2] 张月, 周航, 吴海军. 玫瑰在食品中的应用及前景展望[J]. 现代食品, 2021, 27(11): 25-27.
ZHANG Y, ZHOU H, WU H J. Application and prospect of rosa rugosa in food[J]. Modern Food, 2021, 27(11): 25-27.
[3] ZHANG Q Q, RUI X, LI W, et al. Anti-swarming and -biofilm activities of rose phenolic extract during simulated in vitro gastrointestinal digestion[J]. Food Control, 2016, 64: 189-195.
[4] 刘真, 汤晓娟, 王彬, 等. 基于风味成分分析的不同干燥方式玫瑰花茶鉴别技术研究[J]. 食品安全质量检测学报, 2022, 13(12): 3842-3849.
LIU Z, TANG X J, WANG B, et al. Study on identification technology of rose tea with different drying methods based on flavor compounds analysis[J]. Journal of Food Safety and Quality, 2022, 13(12): 3842-3849.
[5] 刘芳, 任启飞, 李占彬, 等. 贵州玫瑰花茶的氨基酸组成及其品质综合评价[J]. 食品安全质量检测学报, 2022, 13(14): 4706-4714.
LIU F, REN Q F, LI Z B, et al. Amino acid composition and comprehensive quality evaluation of Guizhou rose tea[J]. Journal of Food Safety and Quality, 2022, 13(14): 4706-4714.
[6] 郑新琰, 矣润梅, 许冬月, 等. 不同加工方法对墨红玫瑰花茶产品质量指标及酶活的影响及相关性分析[J]. 食品工业科技, 2023, 44(15): 337-345.
ZHENG X Y, YI R M, XU D Y, et al. Effect of different processing methods on the quality indexes and enzyme activities of rosa crimson glory tea and correlation analysis[J]. Science and Technology of Food Industry, 2023, 44(15): 337-345.
[7] LIU Z, LIU L X, HAN Q D, et al. Quality assessment of rose tea with different drying methods based on physicochemical properties, HS-SPME-GC-MS, and GC-IMS[J]. Journal of Food Science, 2023, 88(4): 1378-1391.
[8] XIE H M, WANG H D, CHEN B X, et al. Untargeted metabolomics analysis to unveil the chemical markers for the differentiation among three Gleditsia sinensis-derived herbal medicines by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry[J]. Arabian Journal of Chemistry, 2022, 15(5): 103762.
[9] 赵丹, 杜仁鹏, 刘鹏飞, 等. 代谢组学技术在植物源性食品研究中的应用研究进展[J]. 食品科学, 2015, 36(3): 212-216.
ZHAO D, DU R P, LIU P F, et al. A review of applications of metabolomics techniques in plant-derived food research[J]. Food Science, 2015, 36(3): 212-216.
[10] 毛鸿霖, 杨莉, 肖蓉, 等. 基于非靶向代谢组学方法探究德昂酸茶与普洱茶(熟茶)之间的成分差异[J].食品科学, 2022, 43(18): 236-242.
MAO H L, YANG L, XIAO R, et al. Non-targeted metabolomic analysis reveals the difference in metabolite composition between De’ang sour tea and ripe Pu’er tea[J]. Food Science, 2022, 43(18): 236-242.
[11] 燕飞, 曲东, 纪鹏彬, 等. 基于非靶向代谢组学分析杜仲金花茶发酵过程中代谢物的特征[J]. 食品科学, 2023, 44(10): 300-309.YAN F, QU D, JI P B, et al. Non-targeted metabolomic characterization of metabolites during the fermentation of ‘Golden Flower’ Eucommia ulmoides leaf tea[J]. Food Science, 2023, 44(10): 300-309.
[12] 王刚, 姚雷, 李正娟. 利用苦水玫瑰花渣提取总黄酮可行性分析[J]. 上海农业科技, 2019, 49(2):35-37;45.
WANG G, YAO L, LI Z J. Feasibility analysis of extracting total flavonoids from bitter rose residue[J]. Shanghai Agricultural Science and Technology, 2019, 49(2): 35-37;45.
[13] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2): 248-254.
[14] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
[15] 李建伟. pH示差法测定山楂中花青素的含量[J]. 长治医学院学报, 2015, 29(3): 177-179.
LI J W. Determination of anthocyanin conten in crataegi fructus by pH-differential method[J]. Journal of Changzhi Medical College, 2015, 29(3): 177-179.
[16] 陆秀云, 王波, 曹佳敏, 等. 响应面法优化苦水玫瑰精油提取后废弃物中总黄酮分离纯化工艺及抗氧化活性研究[J]. 食品工业科技, 2017, 38(11): 258-265.
LU X Y, WANG B, CAO J M, et al. Response surface optimization and purification technology and antioxidant activity of total flavonoids from Kushui rose oil distillation waste[J]. Science and Technology of Food Industry, 2017, 38(11): 258-265.
[17] 陶继芳, 范江平, 魏光强, 等. 均匀设计和模糊数学联用优化辣椒蘸水配方[J]. 云南农业大学学报(自然科学), 2023, 38(4): 667-672.
TAO J F, FAN J P, WEI G Q, et al. Uniform design and fuzzy mathematics combined to optimize the chili dipping sauce formula[J]. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(4): 667-672.
[18] JOSHI R, RANA A, GULATI A. Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India[J]. Food Chemistry, 2015, 176: 357-366.
[19] 刘晗璐, 张九凯, 韩建勋, 等. 基于UPLC-QTOF-MS代谢组学技术的NFC和FC橙汁差异成分比较[J]. 食品科学, 2021, 42(6):229-237.
LIU H L, ZHANG J K, HAN J X, et al. Analysis of differential composition between not from concentrate and from concentrate orange juices using UPLC-QTOF-MS-based metabolomics[J]. Food Science, 2021, 42(6):229-237.
[20] YU F, CHEN C, CHEN S N, et al. Dynamic changes and mechanisms of organic acids during black tea manufacturing process[J]. Food Control, 2022, 132:108535.
[21] KHALIL H E, ABDELWAHAB M F, IBRAHIM H I M, et al. Cichoriin, a biocoumarin, mitigates oxidative stress and associated adverse dysfunctions on high-fat diet-induced obesity in rats[J]. Life, 2022, 12(11):1731.
[22] 朱彦凯, 刘铁重, 伍法清, 等. 代谢工程改造大肠杆菌生产肌苷[J]. 食品与发酵工业, 2022, 48(24):1-9.
ZHU Y K, LIU T Z, WU F Q, et al. Metabolic engineering of Escherichia coli for inosine production[J]. Food and Fermentation Industries, 2022, 48(24):1-9.
[23] TEIXEIRA F C, GUTIERRES J M, SOARES M S P, et al. Inosine protects against impairment of memory induced by experimental model of Alzheimer disease: A nucleoside with multitarget brain actions[J]. Psychopharmacology, 2020, 237(3):811-823.
[24] EL-SHAMARKA M E A, KOZMAN M R, MESSIHA B A S. The protective effect of inosine against rotenone-induced Parkinson′s disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression[J]. Naunyn-Schmiedeberg′s Archives of Pharmacology, 2020, 393(6): 1041-1053.
[25] 何峰, 李科, 张晓红, 等. 不同有机氮源对发酵法生产肌苷影响的研究[J]. 中国酿造, 2018, 37(4): 88-92.
HE F, LI K, ZHANG X H, et al. Effects of different organic nitrogen sources on the production of inosine by fermentation[J]. China Brewing, 2018, 37(4): 88-92.
[26] BENSALEM S, SOUBHYE J, ALDIB I, et al. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae)[J]. Journal of Ethnopharmacology, 2014, 154(2): 361-369.
[27] 陈琳琳, 邱树毅, 罗小叶, 等. 夏秋茶发花工艺及发花过程中主要物质成分变化[J]. 食品工业, 2017, 38(9): 71-75.
CHEN L L, QIU S Y, LUO X Y, et al. The fungus grow processing of summer-autumn tea and the changes of main components during the fungus growing[J]. The Food Industry, 2017, 38(9): 71-75.
[28] 胡明珍, 刘慧燕, 潘琳, 等. 基于非靶向代谢组学分析副干酪乳杆菌发酵枸杞汁各阶段代谢差异[J]. 食品科学, 2022, 43(8): 142-149.
HU M Z, LIU H Y, PAN L, et al. Non-targeted metabolomics analysis of differential metabolite profiles of goji juice fermented by Lactobacillus paracasei[J]. Food Science, 2022, 43(8): 142-149.
[29] 许皓, 肖虹菲, 林家威, 等. 现代工艺六堡茶渥堆过程中茶汤色泽及主要滋味品质成分动态变化[J]. 食品与发酵工业, 2024,50(11): 317-326.
XU H, XIAO H F, LIN J W et al. Dynamic changes of tea soup color and main taste quality during process of modern craft Liupao tea fermentation[J]. Food and Fermentation Industries, 2024,50(11): 317-326.
[30] CHEN H B, YU F, KANG J X, et al. Quality chemistry, physiological functions, and health benefits of organic acids from tea (Camellia sinensis)[J]. Molecules, 2023, 28(5): 2339-2339.
[31] 张舒, 王长远, 冯玉超, 等. 气相色谱-质谱联用代谢组学技术分析不同产地稻米代谢物[J]. 食品科学, 2021, 42(8): 206-213.
ZHANG S, WANG C Y, FENG Y C, et al. Analysis of metabolites in rice produced in different regions by GC-MS-based metabonomics[J]. Food Science, 2021, 42(8): 206-213.
[32] LU W, SHI Y, WANG R, et al. Antioxidant activity and healthy benefits of natural pigments in fruits: A review[J]. International Journal of Molecular Sciences, 2021, 22(9): 4945.
[33] QIN H, DENG X Q, LI B C, et al. Volatiles, polysaccharides and total polyphenols in Chinese rose tea infusions and their antioxidant activities[J]. Journal of Food Processing and Preservation, 2018, 42(1): e13323.
[34] 顾秋亚, 李姝瑶, 杨文华, 等. 富含黄酮苷元沙棘叶发酵茶的制备及其生物活性[J]. 食品研究与开发, 2022, 43(24): 118-124.
GU Q Y, LI S Y, YANG W H, et al. Preparation and activity of the fermented tea of seabuckthorn leaf rich in flavonoid glycosides[J]. Food Research and Development, 2022, 43(24): 118-124.
[35] 化洪苓, 尹文哲, 张智, 等. 刺五加发酵茶工艺优化及其抗氧化活性[J]. 食品科学技术学报, 2018, 36(3): 56-65.
HUA H L, YIN W Z, ZHANG Z, et al. Optimization of antimicrobial process of Acanthopanax senticosus fermented tea[J]. Journal of Food Science and Technology, 2018, 36(3): 56-65.
[36] YUE Q L, WANG Z J, YU F P, et al. Changes in metabolite profiles and antioxidant and hypoglycemic activities of Laminaria japonica after fermentation[J]. LWT, 2022, 158: 113122.
[37] 谭榀新, 叶涛, 刘湘新, 等. 植物提取物抗氧化成分及机理研究进展[J]. 食品科学, 2010, 31(15): 288-292.
TAN P X, YE T, LIU X X, et al. Research advances in antioxidant composition of botanical extracts and their action mechanisms[J]. Food Science, 2010, 31(15): 288-292.
Outlines

/