Research progress of nanoparticles and film-forming methods commonly used in the food field

  • SONG Ke ,
  • LIU Fei ,
  • GUO Fengjiao ,
  • HAN Tingting ,
  • SUN Qianqian ,
  • YANG Suzhen
Expand
  • (Shandong Freda Biotech Co.Ltd., Jinan 250101, China)

Received date: 2024-01-08

  Revised date: 2024-02-20

  Online published: 2024-12-27

Abstract

Nanoparticles have been widely researched and developed in the food field due to their characterizations of controllable particle size, good biocompatibility and degradability, and easy processing and modification.This paper systematically described the characteristics of nanoparticles commonly used in the food field, which include organic nanoparticles such as starch, chitosan and cellulose, and inorganic nanoparticles such as AgNPs, TiO2, SiO2 and ZnO. At the same time, the existing literatures were summarized and analyzed, and the film-forming methods involving nanoparticles were classified into two categories, “nanoparticle embedding composite film-forming” and “nanoparticle interfacial composite film-forming”. Finally, the current applications of nanoparticles in food additives and food packaging films were summarized.Through the above overview of the properties of nanoparticles and their involvement in film formation, it is expected to provide a theoretical reference for their novel applications in the food field.

Cite this article

SONG Ke , LIU Fei , GUO Fengjiao , HAN Tingting , SUN Qianqian , YANG Suzhen . Research progress of nanoparticles and film-forming methods commonly used in the food field[J]. Food and Fermentation Industries, 2024 , 50(23) : 377 -385 . DOI: 10.13995/j.cnki.11-1802/ts.038395

References

[1] MULLA M Z, ROSTAMABADI H, HABIBI N, et al.Pullulan nanocomposites:Effect of nanoparticles and essential oil reinforcement on its performance and food packaging applications[J].Food and Humanity, 2023, 1:887-894.
[2] LIN N, HUANG J, DUFRESNE A.Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials:A review[J].Nanoscale, 2012, 4(11):3274-3294.
[3] GOMAA E Z.Silver nanoparticles as an antimicrobial agent:A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria[J].Journal of General and Applied Microbiology, 2017, 63(1):36-43.
[4] SHI P Y, SUN H L, ZHANG H G, et al.Highly effective antibacterial properties of self-formed Ag nanoparticles/Zr-Ag granular films[J].Applied Surface Science, 2023, 622:156929.
[5] QUINTEROS M A, CANO ARISTIZÁBAL V, DALMASSO P R, et al.Oxidative stress generation of silver nanoparticles in three bacterial Genera and its relationship with the antimicrobial activity[J].Toxicology in Vitro, 2016, 36:216-223.
[6] ZHANG R, LAN W J, JI T T, et al.Development of polylactic acid/ZnO composite membranes prepared by ultrasonication and electrospinning for food packaging[J].LWT, 2021, 135:110072.
[7] 杨皓程, 陈一夫, 叶辰, 等.有机-无机复合多孔膜制备与应用[J].化学进展, 2015, 27(8):1014-1024.
YANG H C, CHEN Y F, YE C, et al.Advances in porous organic-inorganic composite membranes[J].Progress in Chemistry, 2015, 27(8):1014-1024.
[8] WARDANA A A, KINGWASCHARAPONG P, WIGATI L P, et al.The antifungal effect against Penicillium italicum and characterization of fruit coating from chitosan/ZnO nanoparticle/indonesian sandalwood essential oil composites[J].Food Packaging and Shelf Life, 2022, 32:100849.
[9] MUNHUWEYI K, CALEB O J, LENNOX C L, et al.In vitro and in vivo antifungal activity of chitosan-essential oils against pomegranate fruit pathogens[J].Postharvest Biology and Technology, 2017, 129:9-22.
[10] 袁飞, 徐宝梁, 黄文胜, 等.纳米技术在世界范围内食品工业中的应用[J].食品科技, 2007, 32(2):17-20.
YUAN F, XU B L, HUANG W S, et al.Apply of nanotechnology on the food industry all around the world[J].Food Science and Technology, 2007, 32(2):17-20.
[11] 杨翦秋, 毕会敏, 范方宇.木薯纳米淀粉的制备及乳化性能研究[J].食品与发酵工业,2024,50(5):243-248.
YANG Q Q, BI H M, FAN F Y.Preparation and emulsifying properties of cassava nanostarch[J].Food and Fermentation Industry,2024,50(5):243-248.
[12] FU L L, ZHU J, ZHANG S Y, et al.Hierarchical structure and thermal behavior of hydrophobic starch-based films with different amylose contents[J].Carbohydrate Polymers, 2018, 181:528-535.
[13] QIU C, QIN Y, ZHANG S L, et al.A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles:Their characteristics and the adsorption properties of polyphenols[J].Food Chemistry, 2016, 213:579-587.
[14] 刘建新. 壳聚糖材料的制备及其应用研究进展[J].纤维素科学与技术, 2023, 31(3):60-66.
LIU J X.Progress on the preparation and application of chitosan materials[J].Journal of Cellulose Science and Technology, 2023, 31(3):60-66.
[15] DA SILVA N P, DO CARMO RAPOZO LAVINAS PEREIRA E, DUARTE L M, et al.Improved anti-Cutibacterium acnes activity of tea tree oil-loaded chitosan-poly(ε-caprolactone) core-shell nanocapsules[J].Colloids and Surfaces B:Biointerfaces, 2020, 196:111371.
[16] VERLEE A, MINCKE S, STEVENS C V.Recent developments in antibacterial and antifungal chitosan and its derivatives[J].Carbohydrate Polymers, 2017, 164:268-283.
[17] 户昕娜, 朱帅, 马涛, 等.磁性纤维素纳米晶体与水溶性聚合物间相互作用分析及其乳化特性探究[J].食品与发酵工业, 2021, 47(11):82-88.
HU X N, ZHU S, MA T, et al.Analysis of interaction between magnetic cellulose nanocrystal and water-soluble polymer and its emulsion characteristics[J].Food and Fermentation Industries, 2021, 47(11):82-88.
[18] ÁLVAREZ-BERMÚDEZ O, ADAM-CERVERA I, AGUADO-HERNÁNDIZ A, et al.Magnetic polyurethane microcarriers from nanoparticle-stabilized emulsions for thermal energy storage[J].ACS Sustainable Chemistry & Engineering, 2020, 8(49):17956-17966.
[19] EL-SHERBINY G M, ABOU EL-NOUR S A, ASKAR A A, et al.Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent[J].Bioprocess and Biosystems Engineering, 2022, 45(2):257-268.
[20] 侯娇娜. 从金属混合溶液中选择性提取制备球形纳米银[J].山西化工, 2023, 43(9):13-14;17.
HOU J N.Preparation of spherical silver nanoparticles by selective extraction from mixed metal solutions[J].Shanxi Chemical Industry, 2023, 43(9):13-14;17.
[21] SEONG M, LEE D G.Silver nanoparticles against Salmonella enterica serotype typhimurium:Role of inner membrane dysfunction[J].Current Microbiology, 2017, 74(6):661-670.
[22] WU Z G, TANG S W, DENG W J, et al.Antibacterial chitosan composite films with food-inspired carbon spheres immobilized AgNPs[J].Food Chemistry, 2021, 363:130342.
[23] 杨振, 杨阳, 王晓慧, 等.二氧化钛纳米管的制备和生长机制[J].云南冶金, 2023, 52(S1):100-104.
YANG Z, YANG Y, WANG X H, et al.Preparation and growth mechanism of TiO2 nanotubes[J].Yunnan Metallurgy, 2023, 52(S1):100-104.
[24] LAN W J, WANG S Y, ZHANG Z J, et al.Development of red apple pomace extract/chitosan-based films reinforced by TiO2 nanoparticles as a multifunctional packaging material[J].International Journal of Biological Macromolecules, 2021, 168:105-115.
[25] 谢志鹏, 孙思源, 葛一瑶, 等.一种粒度可控的非晶单分散纳米二氧化硅粉体的制备方法, CN106744998A[P].
XIE ZHIPENG, SUN SIYUAN, GE YIYAO, et al.Preparation method of amorphous monodisperse nano-silica powder with controllable particle size, CN106744998A[P].
[26] RUKMANIKRISHNAN B, JO C, CHOI S, et al.Flexible ternary combination of gellan gum, sodium carboxymethyl cellulose, and silicon dioxide nanocomposites fabricated by quaternary ammonium silane:Rheological, thermal, and antimicrobial properties[J].ACS Omega, 2020, 5(44):28767-28775.
[27] 刘丹, 邱华.硅烷偶联剂IPTS改性纳米ZnO的制备及性能研究[J].化工新型材料, 2023, 51(7):271-275.
LIU D, QIU H.Preparation and properties study of nano-ZnO modified by silane coupling agent IPTS[J].New Chemical Materials, 2023, 51(7):271-275.
[28] ASROFI M, ABRAL H, KASIM A, et al.Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite:Effect of ultrasonic vibration during processing[J].Fibers, 2018, 6(2):40.
[29] XIAO Y Q, LIU Y N, KANG S F, et al.Development and evaluation of soy protein isolate-based antibacterial nanocomposite films containing cellulose nanocrystals and zinc oxide nanoparticles[J].Food Hydrocolloids, 2020, 106:105898.
[30] ZHENG M, WANG P L, ZHAO S W, et al.Cellulose nanofiber induced self-assembly of zinc oxide nanoparticles:Theoretical and experimental study on interfacial interaction[J].Carbohydrate Polymers, 2018, 195:525-533.
[31] JIANG Y X, ZHAO G Y, YANG X L, et al.Preparation and characterization of nano-SiO2-modified emulsified film and its application for strawberry preservation[J].Food Packaging and Shelf Life, 2023, 40:101181.
[32] YANG M L, SHI J S, XIA Y Z.Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films[J].International Journal of Biological Macromolecules, 2018, 107:2686-2694.
[33] GAZZOTTI S, FARINA H, LESMA G, et al.Polylactide/cellulose nanocrystals:The in situ polymerization approach to improved nanocomposites[J].European Polymer Journal, 2017, 94:173-184.
[34] LIU P M, CHEN J L, ZHANG Z X, et al.Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays[J].Nanoscale, 2018, 10(8):3673-3679.
[35] LIU Y X, SHAO C M, WANG Y, et al.Bio-inspired self-adhesive bright non-iridescent graphene pigments[J].Matter, 2019, 1(6):1581-1591.
[36] BAI L, LIM Y, ZHOU J J, et al.Bioinspired production of noniridescent structural colors by adhesive melanin-like particles[J].Langmuir, 2019, 35(30):9878-9884.
[37] ZHAO X J, WANG Q, YU X L, et al.Hierarchical composite microstructures fabricated at the air/liquid interface through multilevel self-assembly of block copolymers[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 516:171-180.
[38] YU M T, YANG L, YAN L M, et al.ZnO nanoparticles coated and stearic acid modified superhydrophobic chitosan film for self-cleaning and oil-water separation[J].International Journal of Biological Macromolecules, 2023, 231:123293.
[39] TOTOLIN V, SARMADI M, MANOLACHE S O, et al.Atmospheric pressure plasma enhanced synthesis of flame retardant cellulosic materials[J].Journal of Applied Polymer Science, 2010, 117(1):281-289.
[40] DO NASCIMENTO W J, DA COSTA J C M, ALVES E S, et al.Zinc oxide nanoparticle-reinforced pectin/starch functionalized films:A sustainable solution for biodegradable packaging[J].International Journal of Biological Macromolecules, 2024, 257:128461.
[41] CHAUDHARI A K, DAS S, DWIVEDI A, et al.Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products:A review[J].International Journal of Biological Macromolecules, 2023, 253:127688.
[42] 师恩娟, 李智娴, 戴竹青, 等.类胡萝卜素肠道吸收与代谢的影响因素研究进展[J].中国食品学报, 2023, 23(5):411-420.
SHI E J, LI Z X, DAI Z Q, et al.Research progress on factors affecting intestinal absorption and metabolism of carotenoids[J].Journal of Chinese Institute of Food Science and Technology, 2023, 23(5):411-420.
[43] 纳米食品添加剂安全引争议 [J].中国果菜, 2016, 36(11):3.
Controversy over the safety of nano food additives [J].China Fruit and Vegetable, 2016, 36(11):3.
[44] LIN D R, ZHENG Y, HUANG Y C, et al.Investigation of the structural, physical properties, antioxidant, and antimicrobial activity of chitosan- nano-silicon aerogel composite edible films incorporated with okara powder[J].Carbohydrate Polymers, 2020, 250:116842.
[45] 陈志炜, 李亚娜.聚乙烯醇/花青素/纳米氧化锌膜的制备及在智能包装上的应用[J].武汉轻工大学学报, 2023, 42(3):10-15;33.
CHEN Z W, LI Y N.Preparation of polyvinyl alcohol/anthocyanin/nano-ZnO film and application in intelligent packaging[J].Journal of Wuhan Polytechnic University, 2023, 42(3):10-15;33.
Outlines

/