Curcumin encapsulated by Geotrichum candidum isolated from kefir and its stability

  • WU Yueran ,
  • BAO Xuan ,
  • YIN Xintao ,
  • FENG Xue ,
  • DONG Mingsheng
Expand
  • (College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China)

Received date: 2021-04-30

  Revised date: 2021-05-24

  Online published: 2021-10-18

Abstract

The feasibility of using Geotrichum candidum isolated from kefir for curcumin encapsulation was studied. The encapsulation condition was optimized by response surface analysis, the G. candidum-curcumin encapsulation products (GCEPs) were observed with laser confocal microscopy and transmission electron microscopy, and the stability of GCEPs at different storage time and pH was investigated. The results showed that the optimized encapsulation condition was pH 6.5, encapsulation medium with ethanol volume fraction of 45%, and vacuum infusion treatment for 20 minutes. At the optimized condition, the encapsulation efficiency was (54.12±1.07)%, which was relatively high. The images of laser confocal microscopy and transmission electron microscopy illustrated that the vacuum infusion method could successfully encapsulate curcumin into G. candidum, and there was no significant effect on the cellular morphology of G. candidum. The stability of curcumin was significantly enhanced after the encapsulation process. The retention rate of curcumin was (70.41±1.17)% after 30 days of storage at room temperature, and the curcumin in GCEPs also showed great stability in acidic, neutral and weakly alkaline environments. In conclusion, G. candidum had excellent encapsulation ability for curcumin, and significantly improved the stability of curcumin. Therefore, G. candidum is considered as an ideal carrier for curcumin encapsulation.

Cite this article

WU Yueran , BAO Xuan , YIN Xintao , FENG Xue , DONG Mingsheng . Curcumin encapsulated by Geotrichum candidum isolated from kefir and its stability[J]. Food and Fermentation Industries, 2021 , 47(18) : 237 -242 . DOI: 10.13995/j.cnki.11-1802/ts.027913

References

[1] MEHANNY M, HATHOUT R M, GENEIDI A S, et al.Exploring the use of nanocarrier systems to deliver the magical molecule;Curcumin and its derivatives[J].Journal of Controlled Release, 2016, 225:1-30.
[2] 鲍彩彩, 原铂尧, 孙梦娇, 等.姜黄素对小鼠实验性自身免疫性脑脊髓炎的自噬调节及抗炎作用[J].解放军医学杂志, 2019, 44(7):593-599.
BAO C C, YUAN B Y, SUN M J, et al.Autophagy regulation and anti-inflammatory effect of curcumin on the mouse with experimental autoimmune encephalomyelitis[J].Medical Journal of Chinese People′s Liberation Army, 2019, 44(7):593-599.
[3] BORRA S K, MAHENDRA J, GURUMURTHY P, et al.Effect of curcumin against oxidation of biomolecules by hydroxyl radicals[J].Journal of Clinical and Diagnostic Research, 2014, 8(10):1-5.
[4] 赵轶峰, 魏玉磊, 王萍, 等.姜黄素抑制Wnt/β-catenin信号通路诱导乳腺癌细胞凋亡的机制研究[J].现代中西医结合杂志, 2016, 25(29):3 202-3 204;3 306.
ZHAO Y F, WEI Y L, WANG P, et al.Study on the mechanism of curcumin inhibiting the apoptosis of breast cancer cells induced by Wnt/β- catenin signaling pathway[J].Modern Journal of Integrated Traditional Chinese and Western Medicine, 2016, 25(29):3 202-3 204;3 306.
[5] 谢希, 彭雪英, 王叙煌.姜黄素对2型糖尿病模型大鼠胰腺内质网应激PERK-CHOP信号通路的影响[J].国际中医中药杂志, 2020, 42(9):871-875.
XIE X, PENG X Y, WANG X H.Effect of curcumin on endoplasmic Reticulum stress PERK-CHOP signaling pathway in the pancreas of rats in a type 2 diabetes model[J].International Journal of Traditional Chinese Medicine, 2020, 42(9):871-875.
[6] 夏承来, 罗红彬, 严鹏科, 等.姜黄素对HIV-1患者CD4+T细胞TNF-α表达的影响[J].中药材, 2011, 34(8):1 318-1 320.
XIA C L, LUO H B, YAN P K, et al.Effect of curcumin on TNF-α expression in CD4+T cells of HIV-1 patients[J].Journal of Chinese Medicinal Materials, 2011, 34(8):1 318-1 320.
[7] 马榕祯, 吴岩, 陈秀菊, 等.姜黄素预处理缓解小鼠脓毒症心肌病的作用和机制研究[J].中国体外循环杂志, 2020, 18(1):48-54.
MA R Z, WU Y, CHEN X J, et al.Study of the effect of curcumin pretreatment on septic cardiomyopathy and mechanisms in mice[J].Chinese Journal of Extracorporeal Circulation, 2020, 18(1):48-54.
[8] TØNNESEN H H, MÁSSON M, LOFTSSON T.Studies of curcumin and curcuminoids.XXVII.Cyclodextrin complexation:Solubility, chemical and photochemical stability[J].International Journal of Pharmaceutics, 2002, 244(1-2):127-135.
[9] ANAND P, KUNNUMAKKARA A B, NEWMAN R A, et al.Bioavailability of curcumin:Problems and promises[J].Molecular Pharmaceutics, 2007, 4(6):807-818.
[10] 任爽, 董文霞, 刘锦芳, 等.食品运载体系包埋姜黄素的研究进展[J].食品科学, 2021, 42(9):264-274.
REN S, DONG W X, LIU J F, et al.Research progress on food delivery systems for curcumin encapsulation[J].Food Science, 2021, 42(9):264-274.
[11] CIAMPONI F, DUCKHAM C, TIRELLI N.Yeast cells as microcapsules.Analytical tools and process variables in the encapsulation of hydrophobes in S.cerevisiae[J].Applied Microbiology and Biotechnology, 2012, 95(6):1 445-1 456.
[12] 田会婷, 朱晔, 郭呈斌, 等.姜黄素-明胶纳米复合物改善药物水溶性和稳定性的研究[J].河南大学学报(医学版), 2019, 38(1):10-15.
TIAN H T, ZHU Y, GUO C B, et al.Study on improvement on the solubility and stability of curcumin by nanocomplexation with gelatin[J].Journal of Henan University (Medical Science), 2019, 38(1):10-15.
[13] MATHEW A, FUKUDA T, NAGAOKA Y, et al.Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer′s disease[J].PLoS One, 2012, 7(3):e32616.
[14] TENG Z, LUO Y C, WANG Q.Nanoparticles synthesized from soy protein:Preparation, characterization, and application for nutraceutical encapsulation[J].Journal of Agricultural and Food Chemistry, 2012, 60(10):2 712-2 720.
[15] XIANG H, SUN-WATERHOUSE D, CUI C, et al.Modification of soy protein isolate by glutaminase for nanocomplexation with curcumin[J].Food Chemistry, 2018, 268:504-512.
[16] PARAMERA E I, KONTELES S J, KARATHANOS V T.Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch[J].Food Chemistry, 2011, 125(3):913-922.
[17] FIGUEIREDO S, MOREIRA J N, GERALDES C F G C, et al.Yeast cell wall particles:A promising class of nature-inspired microcarriers for multimodal imaging[J].Chemical Communications, 2011, 47(38):10 635.
[18] BOUTROU R, GUéGUEN M.Interests in Geotrichum candidum for cheese technology[J].International Journal of Food Microbiology, 2005, 102(1):1-20.
[19] BOUTROU R, KERRIOU L, GASSI J Y.Contribution of Geotrichum candidum to the proteolysis of soft cheese[J].International Dairy Journal, 2006, 16(7):775-783.
[20] MENG L, LI Z Y, LIU L Z, et al.Lead removal from water by a newly isolated Geotrichum candidum LG-8 from Tibet ke fir milk and its mechanism[J].Chemosphere, 2020, 259:127507.
[21] 张文佳. 产朊假丝酵母和白地霉混合固态发酵豆渣生产反刍动物饲料的研究[D].哈尔滨:东北农业大学, 2015.
ZHANG W J.Study on solid-state fermented beandreg by Candida utilis and Geotrichum candidum[D].Harbin:Northeast Agricultural University, 2015.
[22] YOUNG S, DEA S, NITIN N.Vacuum facilitated infusion of bioactives into yeast microcarriers:Evaluation of a novel encapsulation approach[J].Food Research International, 2017, 100:100-112.
[23] ELISKASES-LECHNER F, GUéGUEN M, PANOFF J M.Yeasts and Molds|Geotrichum candidum[M].2nd ed.Paris:Elsevier, 2011.
[24] WANG Y J, PAN M H, CHENG A L, et al.Stability of curcumin in buffer solutions and characterization of its degradation products[J].Journal of Pharmaceutical and Biomedical Analysis, 1997, 15(12):1 867-1 876.
[25] KUHN P J, TRINCI A P J, JUNG M J, et al.Biochemistry of Cell Walls and Membranes in Fungi[M].Berlin:Springer, 1991.
[26] 冯甜华. 姜黄素的提纯、稳定性及抗氧化性研究[D].重庆:重庆大学, 2016.
FENG T H.The research on the extraction, purification, stability and antioxidant of curcumin[D].Chongqing:Chongqing University, 2016.
[27] MOHANTY C, SAHOO S K.The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation[J].Biomaterials, 2010, 31(25):6 597-6 611.
Outlines

/