[1] FREITAS F, TORRES C A V, REIS M A M.Engineering aspects of microbial exopolysaccharide production[J].Bioresource Technology, 2017, 245:1 674-1 683.
[2] WANG J, SALEM D R, SANI R K.Extremophilic exopolysaccharides:A review and new perspectives on engineering strategies and applications[J].Carbohydrate Polymers, 2019, 205:8-26.
[3] LIU J, WANG X C, PU H M, et al.Recent advances in endophytic exopolysaccharides:Production,structural characterization, physiological role and biological activity[J].Carbohydrate Polymers, 2017, 157(10):1 113-1 124.
[4] YILDIZ H, KARATAS N.Microbial exopolysaccharides:Resources and bioactive properties[J].Process Biochemistry, 2018, 72:41-46.
[5] SHUKLA A, MEHTA K, PARMAR J, et al.Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell[J].European Polymer Journal, 2019, 119:298-310.
[6] MALICK A, KHODAEI N, BENKERROUM N, et al.Production of exopolysaccharides by selected Bacillus strains:Optimization of media composition to maximize the yield and structural characterization[J].International Journal of Biological Macromolecules, 2017, 102:539-549.
[7] AMIRI S, REZAEI MOKARRAM R, SOWTI KHIABANI M, et al.Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp.lactis BB12:Optimization of fermentation variables and characterization of structure and bioactivities[J].International Journal of Biological Macromolecules, 2019, 123(15):752-765.
[8] 李琪雯, 周嫄, 柯成竹, 等.微生物生产威兰胶的研究进展[J].食品工业科技, 2019, 40(23):337-342;348.
LI Q W, ZHOU Y, KE C Z, et al.Research progress in microbial production of welan gum[J].Science and Technology of Food Industry, 2019, 40(23):337-342;348.
[9] ZHOU Y, CUI Y H, QU X J.Exopolysaccharides of lactic acid bacteria:Structure, bioactivity and associations:A review[J].Carbohydrate Polymers, 2019, 207:317-332.
[10] ZHONG C Y, CAO G, RONG K, et al.Characterization of a microbial polysaccharide-based bioflocculant and its anti-inflammatory and pro-coagulant activity[J].Colloids and Surfaces B:Biointerfaces, 2018, 161(1):636-644.
[11] OERLEMANS M M P, AKKERMAN R, FERRARI M, et al.Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health[J].Journal of Functional Foods, 2021, 76:104289.
[12] RAMAMOORTHY S, GNANAKAN A, S. LAKSHMANA S, et al.Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis[J].Carbohydrate Polymers, 2018, 190(15):113-120.
[13] 张红艳, 李忠玲, 张强, 等.地衣芽孢杆菌MYS68的鉴定及发酵培养基优化[J].粮食与饲料工业, 2018(2):50-53.
ZHANG H Y, LI Z L, ZHANG Q, et al.Identification and optimization of fermentation medium for Bacillus licheniformis MYS 68[J].Cereal & Feed Industry, 2018(2):50-53.
[14] 高泽鑫, 何腊平, 刘亚兵, 等.纳豆激酶的研究进展与展望[J].中国酿造, 2017, 36(8):11-15.
GAO Z X, HE L P, LIU Y B, et al.Research progress and prospect of nattokinase[J].China Brewing, 2017, 36(8):11-15.
[15] 刘卫宝, 余讯, 徐静静, 等.黄芪多糖的分离、结构表征及益生活性研究[J].食品与发酵工业, 2020, 46(7):50-56.
LIU W B, YU X, XU J J, et al.Isolation, structure characterization and prebiotic activity of polysaccharides from Astragalus membranaceus[J].Food and Fermentation Industries, 2020, 46(7):50-56.
[16] 陈博文, 李贞蓉, 常明昌, 等.香菇产α-半乳糖苷酶的液体发酵工艺优化[J].食用菌学报, 2018, 25(2):79-89.
CHEN B W, LI Z R, CHANG M C, et al.Optimization of fermention conditions for the production of α-galactosidase from Lentinula edodes[J].Acta Edulis Fungi, 2018, 25(2):79-89.
[17] 高泽鑫. 高产纳豆激酶菌株的筛选及其酶学稳定性的研究[D].贵阳:贵州大学, 2018.
GAO Z X.Screening of high-yield nattokinase strains and study of its enzymatic stability[D].Guiyang:Guizhou University, 2018.
[18] 李梅云, 高家合, 王革, 等.苏云金杆菌伴孢晶体形态特征观察[J].烟草科技, 2004, 208(11):43-45.
LI M Y, GAO J H, WANG G, et al.Morphologic characteristics of parasporal crystals of Bacillus thuringiensis[J].Tobacco Science & Techonlogy/Disease & Pest Control, 2004, 208(11):43-45.
[19] 杨树丽. 一株产胞外多糖芽孢杆菌的研究[D].上海:上海应用技术大学, 2016.
YANG S L.Study on Bacillus strains producing extracellular polysaccharide[D].Shanghai:Shanghai Institute of Technology, 2016.
[20] R.E.布坎南.伯杰氏细菌鉴定手册[M].第八版.北京:科学出版社, 1984:1 668.
R.E.BUCHANAN.BergeÝs Manual of Determinative Bacteriology[M].8th ed.Beijing:Science Press, 1984:1 668.
[21] ATTESON K.The performance of neighbor-joining methods of phylogenetic reconstruction[J].Algorithmica, 1999, 25(2-3):251-278.
[22] 张路路, 朱朝华, 郭刚.苏云金芽孢杆菌A322菌株发酵培养基和发酵条件的优化[J].热带生物学报, 2014, 5(3):253-259.
ZHANG L L, ZHU C H, GUO G.Optimization of Bacillus thuringiensis A322 strain fermentation medium and cultural conditions[J].Journal of Tropical Biology, 2014, 5(3):253-259.
[23] 胡红伟, 段明房, 闫凌鹏, 等.一株枯草芽孢杆菌的鉴定及液体发酵工艺优化[J].中国饲料, 2017(5):13-19.
HU H W, DUAN M F, YAN L P, et al.Identification of a Bacillus subtilis strain and optimization of its liquid fermentation process[J].China Feed, 2017(5):13-19.
[24] 庞远祥, 谢远红, 金君华, 等.低嘌呤、高纳豆激酶活性枯草芽孢杆菌SH21筛选及发酵条件优化[J].食品与发酵工业, 2021,47(11):194-199.
PANG Y X, XIE Y H, JIN J H, et al.Isolation and optimization of Bacillus subtilis SH21 for low purine and high nattokinase activity[J].Food and Fermentation Industries, 2021,47(11):194-199.
[25] CAGRI-MEHMETOGLU A, KUSAKLI S, VENTER V.Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium[J].Journal of Dairy Science, 2012, 95(7):3 643-3 649.
[26] ASGHER M, UROOJ Y, QAMAR S A, et al.Improved exopolysaccharide production from Bacillus licheniformis MS3:Optimization and structural/functional characterization[J].International Journal of Biological Macromolecules, 2020, 151:984-992.
[27] SUSAN V D J, KEE N L A, FROST C L, et al.Extracellular polysaccharide production in Bacillus Licheniformis SVD 1 and its immunomodulatory effect[J].Bioresources, 2012, 7(4):4 976-4 993.