Optimization of extracting Berberi dasystachya polysaccharides and its protection against H2O2-induced pancreatic β cell injury

  • DENG Yongrong ,
  • HAN Lijuan ,
  • YUE Qingming ,
  • QI Ying ,
  • MA Nana ,
  • ZHAO Yuxin
Expand
  • 1(College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China)
    2(State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

Received date: 2022-08-22

  Revised date: 2022-09-30

  Online published: 2023-03-03

Abstract

To investigate the protective effect of Berberi dasystachya polysaccharides (BDPs) against H2O2-induced oxidative stress in RIN-m5F cells, through a single-factor test and response Box-Behnken design test, the ultrasonic auxiliary enzyme extraction of BDPs was optimized using Berberi dasystachya Maxim berries as the raw material. The physicochemical properties were analyzed by high performance size exclusion chromatography (HPSEC), ion chromatography, scanning electron microscope, and Congo red. The oxidative stress injury model was established with H2O2-induced RIN-m5F cells, and the effect of different concentrations of BDPs on cell survival was determined by the CCK-8 method. The intracellular reactive oxygen species (ROS) level was detected by the DCFH-DA probe method and the activity of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content in the cell culture supernatant was determined by colorimetric method. Results showed that the extraction rate of BDPs was (3.478±0.075)%, which was close to the predicted value of 3.451% when the addition amount of enzymes was 1.25% (mass fraction), the enzymatic time was 57 min, the enzymatic lysis temperature was 45 ℃, and the ultrasonic power was 164 W. RIN-m5F cells were susceptible to the oxidative damage caused by H2O2, as the intervention of BDPs of 0.0625-0.5 mg/mL (P<0.05), the cell survival rate rose in comparison to the model group while the levels of ROS and MDA exhibited a declining trend. BDPs had been found to enhance the SOD and CAT activity of RIN-m5F cells. In conclusion, BDPs had been found to increase cell survival within a range of doses and had a protective effect against H2O2-induced oxidative damage, providing a reference for the development of BDPs function.

Cite this article

DENG Yongrong , HAN Lijuan , YUE Qingming , QI Ying , MA Nana , ZHAO Yuxin . Optimization of extracting Berberi dasystachya polysaccharides and its protection against H2O2-induced pancreatic β cell injury[J]. Food and Fermentation Industries, 2023 , 49(3) : 146 -156 . DOI: 10.13995/j.cnki.11-1802/ts.033345

References

[1] 韩丽娟, 乔杨波, 索有瑞, 等. 直穗小檗果粉对STZ诱导的Ⅰ型糖尿病大鼠糖脂代谢的调节作用[J]. 食品工业科技, 2020, 41(4):298-306.
HAN L J, QIAO Y B, SUO Y R, et al. Effect of Berberis dasystachya Maxim. fruit powder on glucoseand lipid metabolisms in STZ-induced type I diabetic rats[J]. Science and Technology of Food Industry, 2020, 41(4):298-306.
[2] 向前胜, 王宁, 赵越, 等. 青海省不同纬度小檗属3种植物不同部位小檗碱变化规律研究[J]. 西部林业科学, 2015, 44(2): 136-140.
XIANG Q S, WANG N, ZHAO Y, et al. Study on regularity of berberine in various organs of three kinds of Berberis in different latitude of Qinghai province[J]. Journal of West China Forestry Science, 2015, 44(2): 136-140.
[3] 周雯, 韩丽娟, 马娜娜, 等. 黄刺浆果不同组分多糖理化性质及生物活性的比较研究[J]. 食品与发酵工业, 2022, 48(2):189-197.
ZHOU W, HAN L J, MA N N, et al. Comparative study on the physicochemical properties and biological activities of polysaccharides from different components of the berry of Berberi dasystachya[J]. Food and Fermentation Industries, 2022, 48(2):189-197.
[4] 索有瑞, 韩丽娟, 杨芳. 一种青海三刺果粉组合物及其片剂和用途:CN105661392A[P]. 2016-06-15.
SUO Y R, HAN L J, YANG F. A kind of Qinghai Sanci fruit powder composition and its tablets and application: CN105661392A[P]. 2016-06-15.
[5] 纪兰菊. 沙棘、唐古特白刺、黄刺果实游离氨基酸和抗坏血酸的分析[J]. Journal of Integrative Plant Biology, 1989(6): 487-488.
JI L J. Analysis of free amino acids and vitamin C in fruits of Hippophae rhamnoides L., Nitraria tangutorum Bobr.,and Berberis dasystachya Maxim.[J]. Journal of Integrative Plant Biology, 1989(6): 487-488.
[6] HAN L J, SUO Y R, YANG Y J, et al. Optimization, characterization, and biological activity of polysaccharides from Berberis dasystachya Maxim[J]. International Journal of Biological Macromolecules, 2016, 85:655-666.
[7] 孟昭军, 韩丽娟, 索有瑞. 黄刺果实多糖及其制备方法和用途: CN104945525A[P]. 2015-09-30.
MENG S J, HAN L J, SUO Y R The polysaccharides of the berry of Berberi dasystachya and its preparation method and application:CN104945525A[P]. 2015-09-30.
[8] KESHTKAR S, KAVIAN M, JABBARPOUR Z, et al. Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis[J]. Scientific Reports, 2019, 9(1):11701.
[9] 周鸿. 芒果苷在INS-1胰岛β细胞的药代动力学研究[D]. 广州: 广州中医药大学, 2020.
ZHOU H. Pharmacokinetics of mangiferin in INS-1 β cells[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2020.
[10] YANG S W, YAN J M, YANG L L, et al. Alkali-soluble polysaccharides from mushroom fruiting bodies improve insulin resistance[J]. International Journal of Biological Macromolecules, 2019, 126(1):466-474.
[11] FEDERICI M, HRIBAL M, PEREGO L, et al. High glucose causes apoptosis in cultured human pancreatic islets of langerhans[J]. Diabetes, 2001, 50(6): 1 290-1 301.
[12] 孙焕. 小檗碱改善高糖高脂诱导的胰岛NIT-1细胞凋亡的分子机制[D]. 武汉: 华中科技大学, 2008.
SUN H. Molecular mechanism of Berberine’s inhibitory effects on the apoptosis of NIT-1 cells induced by high glucose and saturated fatty acids[D]. Wuhan: Huazhong University of Science and Technology, 2008.
[13] PAN X W, SHAO Y D, WANG F G, et al. Protective effect of apigenin magnesium complex on H2O2-induced oxidative stress and inflammatory responses in rat hepatic stellate cells[J]. Pharmaceutical Biology, 2020, 58(1):553-560.
[14] LI J, WU N H, CHEN X, et al. Curcumin protects islet cells from glucolipotoxicity by inhibiting oxidative stress and NADPH oxidase activity both in vitro and in vivo[J]. Islets, 2019, 11(6): 152-164.
[15] 源瀚祺, 黄庆华, 李娆玲. 通过细胞模型体外评价抗氧化活性实验方法研究综述[J]. 广东药学院学报, 2012, 28(2): 208-211.
YUAN H Q, HUANG Q H, LI R L. Review on cells models for in vitro evaluation of cellular antioxidant activity assay[J]. Journal of Guangdong Pharmaceutical University, 2012, 28(2): 208-211.
[16] 杨艳, 刘东波, 康信聪, 等. H2O2诱导胰岛RIN-m5F细胞构建氧化应激模型[J]. 食品与机械, 2014, 32(2):40-43.
YANG Y, LIU D B, KANG X C, et al. Hydrogen peroxide-induced oxidative stress model of pancreatic RIN-m5F cell[J]. Food and machinery, 2014, 32(2):40-43.
[17] MAHESHWARI A, MISRO M M, AGGARWAL A, et al. Pathways involved in testicular germ cell apoptosis induced by H2O2 in vitro[J]. The FEBS Journal, 2009, 276(3):870-81.
[18] 陈程, 张存劳, 罗国平, 等. 超声波辅助纤维素酶提取牡丹籽饼中多糖及其清除自由基活性研究[J]. 中国油脂, 2018, 43(4):120.
CHEN C, ZHANG C L, LUO G P, et al. Ultrasound-assisted cellulose extraction of polysaccharide from peony seed cake and its free radical scavenging activity[J]. China Oils and Fats, 2018, 43(4):120.
[19] SZEWCZYK K, HEISE E M, PIWOWARSKI J P. Preliminary characterization and bioactivities of some Impatiens L. water-soluble polysaccharides[J]. Molecules, 2018, 23(3): 631.
[20] SONG Q Q, JIANG L, YANG X Q, et al. Physicochemical and functional properties of a water-soluble polysaccharide extracted from mung bean (Vigna radiate L.) and its antioxidant activity[J]. International Journal of Biological Macromolecules. 2019(138):874-880.
[21] WANG L, ZHANG B, XIAO J, et al. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit[J]. Food Chemistry, 2018, 249:127-135.
[22] LIU J, WU S Y, CHEN L, et al. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans[J]. International Journal of Biological Macromolecules, 2020, 155: 1 385.
[23] TANG X, YU R Q, ZHOU Q, et al. Protective effects of γ-aminobutyric acid against H2O2-induced oxidative stress in RIN-m5F pancreatic cells[J]. Nutrition and Metabolism, 2018, 15(1):60.
[24] 倪青, 孟祥, 杜立娟. 半夏泻心汤对H2O2诱导的RIN-m5F细胞凋亡和胰岛素分泌的影响[J]. 北京中医药, 2017, 36(12): 1 117-1 120; 1 129.
NI Q, MENG X, DU L J. Effects of Banxia Xiexin Decoction on H2O2-induced RIN-m5F cell apoptosis and insulin secretion[J]. Beijing Journal of Traditional Chinese Medicine, 2017, 36(12): 1 117-1 120; 1 129.
[25] NOVOSELOVA E G, GLUSHKOVA O V, PARFENUYK S B, et al. Protective effect of Peroxiredoxin 6 against toxic effects of glucose and cytokines in pancreatic RIN-m5F β-cells[J]. Biochemistry. Biokhimiia, 2019, 84(6):637-643.
[26] TANG Q, ZHANG R Y, ZHOU J L, et al. The levels of bioactive ingredients in Citrus aurantium L. at different harvest periods and antioxidant effects on H2O2-induced RIN-m5F cells[J]. Journal of the Science of Food and Agriculture, 2021, 101(4):1 479-1 490.
[27] 景永帅, 袁鑫茹, 代立霞, 等. 纤维素酶协同超声波辅助提取北沙参多糖工艺优化及其理化性质和免疫调节活性研究[J]. 食品工业科技, 2022, 43(14): 185-193.
JING Y S, YUAN X R, DAI L X, et al. Optimization of cellulase synergistic ultrasonic-assisted extraction of polysaccharide from glehniae radix and its physicochemical properties and immunomodulatory activity[J]. Science and Technology of Food Industry, 2022, 43(14): 185-193.
[28] 何瑞阳, 王锋, 苏小军, 等. 玉竹多糖低共熔溶剂提取工艺优化及其抗氧化和抗糖基化活性研究[J]. 食品与发酵工业, 2022, 48(8): 190-198.
HE R Y, WANG F, SU X J, et al. Optimization of extraction process of Polygonatum odoratum polysaccharide by deep eutectic solvent and its antioxidant and anti glycosylation activities[J]. Food and Fermentation Industries, 2022, 48(8): 190-198.
[29] ZHAO Y M, SONG J H, WANG J, et al. Optimization of cellulase-assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai[J]. Journal of the Science of Food and Agriculture, 2016, 96(13): 4 484-4 491.
[30] 于中玉, 黄佳琪, 宇鹏. 响应曲面法优化超声波辅助提取螺旋藻硒多糖工艺[J]. 中国食品添加剂, 2021, 32(11): 107-112.
YU Z Y,HUANG J Q, YU P, et al. Optimization of ultrasonic-assisted extraction of selenium polysaccharides from Spirulina using response surface methodology[J]. China Food Additives, 2021, 32(11): 107-112.
[31] 曲一笛. 多组学分析杨树桑黄多糖通过调控Th1细胞分化的抗结直肠癌活性研究[D].长春: 吉林大学, 2022.
QU Y D. Multi-omics studies revealed the involvement of Th1 cell differentiation in the anti-tumor effect of purified polysaccharide from Sanghuangporus vaninii in colorectal cancer[D]. Changchun:Jilin university, 2022.
[32] ZHANG Y, GU M, WANG K P, et al. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes[J]. Fitoterapia. 2010, 81(8): 1 163-1 170.
[33] 高健美, 李德芬, 牛爽, 等. 金丝桃苷对过氧化氢诱导的A549细胞氧化损伤的保护作用[J]. 中国实验方剂学杂志, 2017, 23(11): 128-133.
GAO J M, LI D F,NIU S, et al. Protective effect of hyperoside on H2O2-induced oxidative damage of A549 cells[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(11): 128-133.
[34] SIM Y C, LEE J S, LEE S, et al. Effects of polysaccharides isolated from Inonotus obliquus against hydrogen peroxide-induced oxidative damage in RIN-m5F pancreatic β-cells[J]. Molecular Medicine Reports, 2016, (14): 4 263-4 270.
[35] SAMPSON S R, BUCRIS E, HOROVITZ-FRIED M, et al. Insulin increases H2O2-induced pancreatic beta cell death[J]. Apoptosis, 2010, 15(10):1 165-1 176.
[36] 任春久. 桑叶多糖MLP对糖尿病大鼠胰岛β细胞氧化应激损伤的保护作用及其机制研究[D]. 泰安:山东农业大学, 2015.
REN C J. Study on protection of mulberry (Morus alba var. multicaulis (Perrott.) Loud) leaf polysaccharide MLP on oxidative stress on the function of pancreas islet β cells of diabetic rat and its mechanim[D]. Tai’an:Shandong Agricultural University, 2015.
[37] 田文慧, 杨永晶, 吴云, 等. 树莓果肉多糖在Ⅰ型糖尿病大鼠中的免疫调节和抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(12): 102-108.
TIAN W H, YANG Y J, WU Y, et al. Immune regulation and antioxidant activity of raspberry pulp polysaccharide through typeⅠdiabetic rats[J]. Food and Fermentation Industries, 2020, 46(12): 102-108.
[38] JIA J, ZHANG X, HU Y S, et al. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats[J]. Food Chemistry, 2009, 115: 32-36.
[39] WU H, GUO H, ZHAO R. Effect of Lycium babarum polysaccharide on the improvement of antioxidant ability and DAN damage in NIDDM rats[J]. The Pharmaceutical Society of Japan, 2006, 126(5): 365-371.
[40] PIRO S, ANELLO M, PIETRO C D, et al. Chronic exposure to free fattyacids or high glucose induces apoptosis in rat pancreatic islets: Possible role of oxidative stress[J]. Metabolism, 2002, 51(10):1 340-1 347.
[41] HAYDEN M R, SOWERS J R. Isletopathy in type 2 diabetes mellitus: Implications of islet RAS, islet fibrosis, islet amyloid, remodeling, and oxidative stress[J]. Antioxidants and Redox Signaling, 2007, 9(7): 891-910.
Outlines

/