Preparation and characterization of pineapple peel cellulose nanofibrils by dilute alkali-ball milling synergistic method

  • BAO Hanxiao ,
  • HU Shuhan ,
  • HUANG Yue ,
  • LYU Tianyi ,
  • ZHANG Yuhao ,
  • YU Yong ,
  • CHEN Hai ,
  • DAI Hongjie
Expand
  • 1(College of Food Science, Southwest University, Chongqing 400715, China)
    2(Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China)
    3(National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China)
    4(Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing (Southwest University), Chongqing 400715, China)

Received date: 2022-04-11

  Revised date: 2022-05-13

  Online published: 2023-06-13

Abstract

Using pineapple peel as raw material and sodium hydroxide (NaOH) solution with different mass fractions (0%-5%) as wet grinding medium, pineapple peel cellulose nanofibrils (PCNF) were prepared by mechanical ball milling. The obtained PCNF was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), thermal gravimeter, and rheometer. Results showed that with the increase of NaOH solution concentration, the non-fibrous components (lignin and hemicellulose) in pineapple peel and the amorphous regions in cellulose were gradually removed, the yield of PCNF decreased, but the crystallinity and cellulose purity of PCNF increased gradually. Compared with the single ball-milled sample (PCNF-0%), the dilute alkali-ball-milling treatment did not change the crystal structure of cellulose but promoted the defibrillation and nanocrystallization process. The morphology and network structure of PCNF were also improved which resulted in the increase of viscosity and moduli, exhibiting a typical shear thinning and elastic gel behavior. The current study proved that the structure of PCNF could be effectively controlled by ball milling with different NaOH solution concentrations, which provided an easy approach for the direct nanocrystallization of fruit and vegetable processing residues.

Cite this article

BAO Hanxiao , HU Shuhan , HUANG Yue , LYU Tianyi , ZHANG Yuhao , YU Yong , CHEN Hai , DAI Hongjie . Preparation and characterization of pineapple peel cellulose nanofibrils by dilute alkali-ball milling synergistic method[J]. Food and Fermentation Industries, 2023 , 49(10) : 64 -70;77 . DOI: 10.13995/j.cnki.11-1802/ts.031928

References

[1] DAI H J, WU J H, ZHANG H, et al.Recent advances on cellulose nanocrystals for Pickering emulsions:Development and challenge[J].Trends in Food Science & Technology, 2020, 102:16-29.
[2] RODA A, LAMBRI M.Food uses of pineapple waste and by-products:A review[J].International Journal of Food Science & Technology, 2019, 54(4):1 009-1 017.
[3] DAI H J, HUANG H H.Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte[J].Journal of Agricultural and Food Chemistry, 2017, 65(3):565-574.
[4] 朱亚崇, 吴朝军, 于冬梅, 等.纳米纤维素制备方法的研究现状[J].中国造纸, 2020, 39(9):74-83.
ZHU Y C, WU C J, YU D M, et al.Research status of nanocellulose preparation methods[J].China Pulp & Paper, 2020, 39(9):74-83.
[5] THOMAS B, RAJ M C, ATHIRA K B, et al.Nanocellulose, a versatile green platform:From biosources to materials and their applications[J].Chemical Reviews, 2018, 118(24):11 575-11 625.
[6] 吕天艺, 张书敏, 陈媛, 等.不同形态纳米纤维素的制备方法研究进展[J].食品与发酵工业, 2022, 48(8):281-288.
LYU T Y, ZHANG S M, CHEN Y, et al.Research progress on preparation methods of different morphologies of nanocellulose[J].Food and Fermentation Industries, 2022, 48(8):281-288.
[7] TRACHE D, HUSSIN M H, MOHAMAD HAAFIZ M K, et al.Recent progress in cellulose nanocrystals:Sources and production[J].Nanoscale, 2017, 9(5):1 763-1 786.
[8] GAO C F, YANG J, HAN L J.Systematic comparison for effects of different scale mechanical-NaOH coupling treatments on lignocellulosic components, micromorphology and cellulose crystal structure of wheat straw[J].Bioresource Technology, 2021, 326:124786.
[9] ALBORNOZ-PALMA G, CHING D, VALERIO O, et al.Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions[J].Cellulose, 2020, 27(18):10 631-10 647.
[10] HUANG Y H, NAIR S S, CHEN H Y, et al.Lignin-rich nanocellulose fibrils isolated from parenchyma cells and fiber cells of western red cedar bark[J].ACS Sustainable Chemistry & Engineering, 2019, 7(18):15 607-15 616.
[11] 王超,赵猛猛,黄培,等.介质和力场协同作用对纳米纤维素形貌结构的调控[J].高分子学报, 2017(9):1 415-1 425.
WANG C, ZHAO M M, HUANG P, et al.Influence of medium polarity and mechanical force on morphology and structure of nanocellulose[J].Acta Polymerica Sinica, 2017(9):1 415-1 425.
[12] 张欢, 戴宏杰, 陈媛, 等.离子液体-球磨法制备柠檬籽纤维素纳米纤丝及其结构表征[J].食品科学, 2021, 42(7):120-127.
ZHANG H, DAI H J, CHEN Y, et al.Preparation and structure characterization of lemon seed cellulose nanofibrils using ionic liquid-assisted ball milling method[J].Food Science, 2021, 42(7):120-127.
[13] YUE Z, HOU Q X, LIU W, et al.Autohydrolysis prior to poplar chemi-mechanical pulping:Impact of surface lignin on subsequent alkali impregnation[J].Bioresource Technology, 2019, 282:318-324.
[14] PIRAS C C, FERNÁNDEZ-PRIETO S, DE BORGGRAEVE W M.Ball milling:A green technology for the preparation and functionalisation of nanocellulose derivatives[J].Nanoscale Advances, 2019, 1(3):937-947.
[15] LIU X R, LI Y D, EWULONU C M, et al.Mild alkaline pretreatment for isolation of native-like lignin and lignin-containing cellulose nanofibers (LCNF) from crop waste[J].ACS Sustainable Chemistry & Engineering, 2019, 7(16):14 135-14 142.
[16] SHU F, GUO Y J, HUANG L, et al.Production of lignin-containing nanocellulose from poplar using ternary deep eutectic solvents pretreatment[J].Industrial Crops and Products, 2022,177:114404.
[17] CHEN Y, ZHANG H, FENG X, et al.Lignocellulose nanocrystals from pineapple peel:Preparation, characterization and application as efficient Pickering emulsion stabilizers[J].Food Research International, 2021, 150:110738.
[18] TEH K C, FOO M L, OOI C W, et al.Sustainable and cost-effective approach for the synthesis of lignin-containing cellulose nanocrystals from oil palm empty fruit bunch[J].Chemosphere, 2021, 267:129277.
[19] FRENCH A D.Idealized powder diffraction patterns for cellulose polymorphs[J].Cellulose, 2014, 21(2):885-896.
[20] 王香平, 何北海, 钱丽颖, 等.桉木化学热磨机械浆的XPS和SEM分析[J].造纸科学与技术, 2009, 28(1):42-45;56.
WANG X P, HE B H, QIAN L Y, et al.Analysis of Eucalyptus CTMP by XPS and SEM[J].Paper Science & Technology, 2009, 28(1):42-45;56.
[21] 吴晶晶, 倪洋, 李燕, 等.白果壳纤维素对不同种类多酚的吸附行为及其动力学研究[J].食品与发酵工业, 2022,48(11):121-128.
WU J J, NI Y, LI Y, et al.Study on adsorption behavior and kinetics of different kinds of polyphenols by ginkgo husk cellulose[J].Food and Fermentation Industries, 2022,48(11):121-128.
[22] LI M F, YIN J, HU L Y, et al.Effect of hydrogen peroxide bleaching on anionic groups and structures of sulfonated chemo-mechanical pulp fibers[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 585:124068.
[23] 汪雪琴, 卢麒麟, 林凤采, 等.纤维素酶解预处理辅助超声法制备竹浆纳米纤维素[J].农业工程学报, 2018, 34(9):276-284.
WANG X Q, LU Q L, LIN F C, et al.Preparation of cellulose nanofibrils from bamboo pulp by cellulase pretreatment combined with ultrasound method[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9):276-284.
[24] NAIR S S, YAN N.Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments[J].Cellulose, 2015, 22(5):3 137-3 150.
[25] YANG H P, YAN R, CHEN H P, et al.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J].Fuel, 2007, 86(12-13):1 781-1 788.
[26] ESPINOSA E, SÁNCHEZ R, GONZÁLEZ Z, et al.Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation:Physicochemical, thermal and rheological characterisation[J].Carbohydrate Polymers, 2017, 175:27-37.
[27] WU C L, MCCLEMENTS D J, HE M Y, et al.Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments[J].Carbohydrate Polymers, 2021, 255:117364.
Outlines

/