[1] SIEUWERTS S, DE BOK F A M, HUGENHOLTZ J, et al.Unraveling microbial interactions in food fermentations:From classical to genomics approaches[J].Applied and Environmental Microbiology, 2008, 74(16):4997-5007.
[2] SMID E J, LACROIX C.Microbe-microbe interactions in mixed culture food fermentations[J].Current Opinion in Biotechnology, 2013, 24(2):148-154.
[3] IVEY M, MASSEL M, PHISTER T G.Microbial interactions in food fermentations[J].Annual Review of Food Science and Technology, 2013, 4(1):141-162.
[4] WINTERS M, PANAYOTIDES D, BAYRAK M, et al.Defined co-cultures of yeast and bacteria modify the aroma, crumb and sensory properties of bread[J].Journal of Applied Microbiology, 2019, 127(3):778-793.
[5] FREY-KLETT P, BURLINSON P, DEVEAU A, et al.Bacterial-fungal interactions:Hyphens between agricultural, clinical, environmental, and food microbiologists[J].Microbiology and Molecular Biology Reviews: MMBR, 2011, 75(4):583-609.
[6] WANG Z M, LU Z M, SHI J S, et al.Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar[J].Scientific Reports, 2016, 6(1): 26818.
[7] WOLFE B E, DUTTON R J.Fermented foods as experimentally tractable microbial ecosystems[J].Cell, 2015, 161(1):49-55.
[8] PONOMAROVA O, GABRIELLI N, SÉVIN D C, et al.Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow[J].Cell Systems, 2017, 5(4):345-357.e6.
[9] ZHANG Y C, KASTMAN E K, GUASTO J S, et al.Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes[J].Nature Communications, 2018, 9(1):336.
[10] HERVE-JIMENEZ L, GUILLOUARD I, GUEDON E, et al.Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus:Involvement of nitrogen, purine, and iron metabolism[J].Applied and Environmental Microbiology, 2009, 75(7):2062-2073.
[11] D’SOUZA G, SHITUT S, PREUSSGER D, et al.Ecology and evolution of metabolic cross-feeding interactions in bacteria[J].Natural Product Reports, 2018, 35(5):455-488.
[12] ZENGLER K, ZARAMELA L S.The social network of microorganisms—How auxotrophies shape complex communities[J].Nature Reviews Microbiology, 2018, 16(6):383-390.
[13] CHAMPOMIER-VERGÈS M C, MAGUIN E, MISTOU M Y, et al.Lactic acid bacteria and proteomics:Current knowledge and perspectives[J].Journal of Chromatography B, 2002, 771(1-2):329-342.
[14] FILANNINO P, DI CAGNO R, GOBBETTI M.Metabolic and functional paths of lactic acid bacteria in plant foods:Get out of the labyrinth[J].Current Opinion in Biotechnology, 2018, 49:64-72.
[15] RATZKE C, BARRERE J, GORE J. Strength of species interactions determines biodiversity and stability in microbial communities[J]. Nature Ecology & Evolution, 2020, 4(3): 376-383.
[16] FERROCINO I, BELLIO A, GIORDANO M, et al. Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages[J]. Applied and Environmental Microbiology, 2018, 84(3): e02120-e02117.
[17] WOLFE B E, BUTTON J E, SANTARELLI M, et al.Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity[J].Cell, 2014, 158(2):422-433.
[18] ADDIS E, FLEET G H, COX J M, et al.The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses[J].International Journal of Food Microbiology, 2001, 69(1-2):25-36.
[19] VAN DEN TEMPEL T, JAKOBSEN M.The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu[J].International Dairy Journal, 2000, 10(4):263-270.
[20] LIU J A, MOON N J.Commensalistic interaction between Lactobacillus acidophilus and Propionibacterium shermanii[J].Applied and Environmental Microbiology, 1982, 44(3):715-722.
[21] STADIE J, GULITZ A, EHRMANN M A, et al.Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir[J].Food Microbiology, 2013, 35(2):92-98.
[22] BECHTNER J, XU D, BEHR J, et al.Proteomic analysis of Lactobacillus nagelii in the presence of Saccharomyces cerevisiae isolated from water kefir and comparison with Lactobacillus hordei[J].Frontiers in Microbiology, 2019, 10(325).DOI:10.3398/fmich.2019.00325.
[23] LIU J, WU Q, WANG P, et al. Synergistic effect in core microbiota associated with sulfur metabolism in spontaneous Chinese liquor fermentation[J]. Applied and Environmental Microbiology, 2017, 83(24): e01475-e01417.
[24] PONOMAROVA O, GABRIELLI N, SÉVIN D C, et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow[J]. Cell Systems, 2017, 5(4):345-357.e6.
[25] JESSICA L, MARIA M, ALBERT M, et al. Saccharomyces and non-Saccharomyces competition during microvinification under different sugar and nitrogen conditions[J]. Frontiers in Microbiology, 2016, 7: 1959.
[26] SMID E J, LACROIX C. Microbe-microbe interactions in mixed culture food fermentations[J]. Current Opinion in Biotechnology, 2013, 24(2): 148-154.
[27] SIEUWERTS S, MOLENAAR D, VAN HIJUM S A F T, et al. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus[J]. Applied and Environmental Microbiology, 2010, 76(23): 7775-7784.
[28] VILJOEN B C.The interaction between yeasts and bacteria in dairy environments[J].International Journal of Food Microbiology, 2001, 69(1-2):37-44.
[29] CRITTENDEN R G, MARTINEZ N R, PLAYNE M J.Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria[J].International Journal of Food Microbiology, 2003, 80(3):217-222.
[30] COURTIN P, RUL F.Interactions between microorganisms in a simple ecosystem:Yogurt bacteria as a study model[J].Lait, 2004, 84:125-134.
[31] DERZELLE S, BOLOTIN A, MISTOU M Y, et al.Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein[J].Applied and Environmental Microbiology, 2005, 71(12):8597-8605.
[32] TREMONTE P, REALE A, DI RENZO T, et al.Interactions between Lactobacillus sakei and CNC (Staphylococcus xylosus and Kocuria varians) and their influence on proteolytic activity[J].Letters in Applied Microbiology, 2010, 51(5):586-594.
[33] GOBBETTI M, CORSETTI A, ROSSI J.The sourdough microflora.Interactions between lactic acid bacteria and yeasts:Metabolism of carbohydrates[J].Applied Microbiology and Biotechnology, 1994, 41(4):456-460.
[34] GOBBETTI M.The sourdough microflora:Interactions of lactic acid bacteria and yeasts[J].Trends in Food Science and Technology, 1998, 9(7):267-274.
[35] MORRIS B E L, HENNEBERGER R, HUBER H, et al.Microbial syntrophy:Interaction for the common good[J].FEMS Microbiology Reviews, 2013, 37(3):384-406.
[36] LIN L, LI Y B.Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum-Part I:Reactor performance[J].Bioresource Technology, 2017, 236:186-193.
[37] BAIREY E, KELSIC E D, KISHONY R.High-order species interactions shape ecosystem diversity[J].Nature Communications, 2016, 7(1):12285.
[38] ANGULO M T, MOOG C H, LIU Y Y.A theoretical framework for controlling complex microbial communities[J].Nature Communications, 2019, 10(1): 1045.
[39] LIU Y Y, SLOTINE J J, BARABÁSI A L.Controllability of complex networks[J].Nature, 2011, 473(7346):167-173.
[40] MARAGKOUDAKIS P A, ZOUMPOPOULOU G, MIARIS C, et al.Probiotic potential of Lactobacillus strains isolated from dairy products[J].International Dairy Journal, 2006, 16(3):189-199.
[41] EMBREE M, LIU J K, AL-BASSAM M M, et al.Networks of energetic and metabolic interactions define dynamics in microbial communities[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50):15450-15455.
[42] D’SOUZA G, WASCHINA S, PANDE S, et al.Less is more:Selective advantages can explain the prevalent loss of biosynthetic genes in bacteria[J].Evolution, 2014, 68(9):2559-2570.
[43] KALETA C, SCHÄUBLE S, RINAS U, et al.Metabolic costs of amino acid and protein production in Escherichia coli[J].Biotechnology Journal, 2013, 8(9):1105-1114.
[44] RAINA J B, FERNANDEZ V, LAMBERT B, et al.The role of microbial motility and chemotaxis in symbiosis[J].Nature Reviews Microbiology, 2019, 17(5):284-294.
[45] ZHANG L, FENG G, DECLERCK S.Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J].The ISME Journal, 2018, 12(10):2339-2351.
[46] LEROI F, PIDOUX M.Detection of interactions between yeasts and lactic acid bacteria isolated from sugary kefir grains[J].Journal of Applied Bacteriology, 1993, 74(1):48-53.
[47] VILJOEN B C. Yeast ecological interactions. Yeast′Yeast, Yeast′Bacteria, Yeast′Fungi Interactions and Yeasts as Biocontrol Agents[M]. Heidelberg: Springer, 2006:83-110.
[48] MAYO B, RODRÍGUEZ J, VÁZQUEZ L, et al. Microbial interactions within the cheese ecosystem and their application to improve quality and safety[J]. Foods, 2021, 10(3): 602-602.
[49] DE FILIPPIS F, LA STORIA A, STELLATO G, et al.A selected core microbiome drives the early stages of three popular Italian cheese manufactures[J].PLoS One, 2014, 9(2):e89680.
[50] SONG Z W, DU H, ZHANG Y, et al.Unraveling core functional microbiota in traditional solid-state fermentation by high-throughput amplicons and metatranscriptomics sequencing[J].Frontiers in Microbiology, 2017, 8:1294.
[51] MARSH A J, O’SULLIVAN O, HILL C, et al.Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources[J].PLoS One, 2013, 8(7):e69371.
[52] LEROI F, PIDOUX M. Characterization of interactions between Lactobacillus hilgardii and Saccharomyces florentinus isolated from sugary kefir grains[J]. Journal of Applied Bacteriology, 1993, 74(1): 54-60.
[53] MAYO B, RODRÍGUEZ J, VÁZQUEZ L, et al. Microbial interactions within the cheese ecosystem and their application to improve quality and safety[J]. Foods, 2021, 10(3): 602.
[54] WU Q, KONG Y, XU Y.Flavor profile of Chinese liquor is altered by interactions of intrinsic and extrinsic microbes[J].Applied and Environmental Microbiology, 2015, 82(2):422-430.
[55] JIANG X, ZERFAß C, FENG S, et al.Impact of spatial organization on a novel auxotrophic interaction among soil microbes[J].The ISME Journal, 2018, 12(6):1443-1456.
[56] HARCOMBE W R, RIEHL W J, DUKOVSKI I, et al.Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics[J].Cell Reports, 2014, 7(4):1104-1115.
[57] TRIVERS R L.The evolution of reciprocal altruism[J].The Quarterly Review of Biology, 1971, 46(1):35-57.
[58] MITRI S, XAVIER J B, FOSTER K R.Social evolution in multispecies biofilms[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2):10839-10846.
[59] ESTRELA S, BROWN S P.Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities[J].PLoS Computational Biology, 2013, 9(12):e1003398.
[60] PANDE S, KAFTAN F, LANG S, et al.Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments[J].The ISME Journal, 2016, 10(6):1413-1423.
[61] NADELL C D, DRESCHER K, FOSTER K R.Spatial structure, cooperation and competition in biofilms[J].Nature Reviews Microbiology, 2016, 14(9):589-600.
[62] ZHENG J A, WU C D, HUANG J, et al.Spatial distribution of bacterial communities and related biochemical properties in Luzhou-flavor liquor-fermented grains[J].Journal of Food Science, 2014, 79(12):M2491-M2498.
[63] SPITAELS F, WIEME A D, JANSSENS M, et al.The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation[J].Food Microbiology, 2015, 49:23-32.
[64] WANG S L, WU Q, NIE Y, et al. Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light-aroma-type liquor produced by solid-state fermentation[J]. Applied and Environmental Microbiology, 2019, 85(10): e03090-e03018.
[65] ZUÑIGA C, ZARAMELA L, ZENGLER K.Elucidation of complexity and prediction of interactions in microbial communities[J].Microbial Biotechnology, 2017, 10(6):1500-1522.
[66] FRANZOSA E A, HSU T, SIROTA-MADI A, et al.Sequencing and beyond:Integrating molecular omics for microbial community profiling[J].Nature Reviews Microbiology, 2015, 13(6):360-372.
[67] DE FILIPPIS F, PARENTE E, ERCOLINI D.Recent past, present, and future of the food microbiome[J].Annual Review of Food Science and Technology, 2018, 9(1):589-608.
[68] VILANOVA C, PORCAR M.Are multi-omics enough?[J].Nature Microbiology, 2016, 1(8):16101.
[69] LAGIER J C, DUBOURG G, MILLION M, et al.Culturing the human microbiota and culturomics[J].Nature Reviews Microbiology, 2018, 16(9):540-550.
[70] GERMERODT S, BOHL K, LÜCK A, et al. Pervasive selection for cooperative cross-feeding in bacterial communities[J]. PLoS Computational Biology, 2016, 12(6): e1004986.
[71] BORDBAR A, MONK J M, KING Z A, et al. Constraint-based models predict metabolic and associated cellular functions[J]. Nature Reviews Genetics, 2014, 15(2): 107-120.
[72] SONG H S, CANNON W, BELIAEV A, et al. Mathematical modeling of microbial community dynamics: A methodological review[J]. Processes, 2015, 3(3): 699-700.
[73] XIAO Y D, ANGULO M T, FRIEDMAN J, et al. Mapping the ecological networks of microbial communities[J]. Nature Communications, 2017, 8: 2042.
[74] AN G, MI Q, DUTTA-MOSCATO J, et al. Agent-based models in translational systems biology[J]. WIREs Systems Biology and Medicine, 2009, 1(2): 159-171.
[75] KUMAR M, JI B, ZENGLER K, et al.Modelling approaches for studying the microbiome[J].Nature Microbiology, 2019, 4(8):1253-1267.
[76] TRISTEZZA M, DI FEO L, TUFARIELLO M, et al.Simultaneous inoculation of yeasts and lactic acid bacteria:Effects on fermentation dynamics and chemical composition of Negroamaro wine[J].LWT-Food Science and Technology, 2016, 66:406-412.
[77] PANDA S K, SHETTY P H. Innovations in Technologies for Fermented Food and Beverage Industries[M]. Heidelberg: Springer, 2018: 25-52.