Please wait a minute...
 
 
食品与发酵工业  2018, Vol. 44 Issue (9): 36-40    DOI: 10.13995/j.cnki.11-1802/ts.016991
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
通过定点突变提高纳豆激酶的酶活及热稳定性
赵菡, 周丽, 周哲敏*
(江南大学 生物工程学院,工业生物技术教育部重点实验室,江苏 无锡,214122)
Enhancing the thermostability and activity of nattokinase by site-directed mutagenesis
ZHAO Han, ZHOU Li, ZHOU Zhe-min*
(School of Biotechnology and the Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  PDF (3469KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳豆激酶(Nattokinase,NK,EC3.4.21.62)是日本传统食品纳豆在发酵过程中产生的具有很强溶栓活性的枯草杆菌蛋白酶,热稳定性较差,不利于在工艺生产中高温环节保证酶活,限制了其生产应用。在蛋白质中,脱酰胺过程将天冬酰胺和谷氨酰胺转化为带负电的天冬氨酸和谷氨酸,可能改变蛋白质的结构进而影响酶的活性、最适pH值和稳定性等。因此,模拟此过程可以高效改造目的酶。为提高纳豆激酶的酶活及稳定性,将位于纳豆激酶表面的天冬酰胺和谷氨酰胺分别突变为天冬氨酸和谷氨酸。通过筛选得到酶活提高突变体Q59E(约为野生型酶的1.54倍)以及热稳定性提高的突变体N218D。双突变体Q59E-N218D的热稳定性进一步提高,半衰期(t 1/2, 33 min)提高为野生型酶(t 1/2, 12 min)的2.75倍,并且酶活达到与原始酶相似水平。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵菡
周丽
周哲敏
关键词:  纳豆激酶  热稳定性  酶活  定点突变  蛋白质改造    
Abstract: Nattokinase (NK, EC3.4.21.62) is a bacterial serine protease derived from the traditional Japanese food natto with strong fibinolytic activity. However, the thermal stability of NK is too low to ensure high enzyme activity in the production process, and thus limits its production and application. Proteins deamidation process converts asparagine (Asn) and glutamine (Gln) residues into negatively charged aspartate (Asp) and glutamic acid (Glu),which may change the local structure of protein and affect the enzyme activity, pH optimum, and stability. Therefore, simulating this process can efficiently modify the target enzyme. In order to improve the activity and stability of NK, Asn and Gln located on the surface were mutated to Asp and Glu, respectively. The mutant Q59E with increased activity (about 1.54 times of the wild type) and mutant N218D with increased thermal stability were obtained. The thermal stability of the double mutant Q59E-N218D was further improved, and its half-life (t1/2, 33 min) was 2.75 times of that of the wild type NK (t1/2, 12 min). It provides a method for enzyme engineering and a new enzyme material for the industrial application of NK.
Key words:  nattokinase    thermostability    enzyme activity    site-directed mutagenesis    protein engineering
收稿日期:  2018-01-31                出版日期:  2018-09-25      发布日期:  2018-10-30      期的出版日期:  2018-09-25
基金资助: 国家自然科学基金项目(31300087);基本科研-重点项目(JUSRP51611A)
作者简介:  硕士研究生(周哲敏教授为通讯作者,E-mail:zhmzhou@jiangnan.edu.cn)。
引用本文:    
赵菡,周丽,周哲敏. 通过定点突变提高纳豆激酶的酶活及热稳定性[J]. 食品与发酵工业, 2018, 44(9): 36-40.
ZHAO Han,ZHOU Li,ZHOU Zhe-min. Enhancing the thermostability and activity of nattokinase by site-directed mutagenesis[J]. Food and Fermentation Industries, 2018, 44(9): 36-40.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.016991  或          http://sf1970.cnif.cn/CN/Y2018/V44/I9/36
[1] BRYAN P N.Protein engineering of subtilisin[J].Biochimica Et Biophysica Acta,2000,1543(2):203-222.
[2] MARTINEZ R,JAKOB F,TU R,et al.Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution[J].Biotechnology & Bioengineering,2013,110(3):711-720.
[3] WENG M,DENG X,BAO W,et al.Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation[J].Biochemical & Biophysical Research Communications,2015,465(3):580-586.
[4] RUAN B,LONDON V,FISHER K E,et al.Engineering substrate preference in subtilisin:structural and kinetic analysis of a specificity mutant[J].Biochemistry,2008,47(25):6 628.
[5] DOHNALEK J,MCAULEY K,BRZOZOWSKI A,et al.Understanding enzymes:Function,design,engineering,and analysis[M].Singapore:Pan Stanford Publishing Pte. Ltd,2016:203-265.
[6] NAKAMURA T,YAMAGATA Y,ICHISHIMA E.Nucleotide sequence of the subtilisin NAT gene,aprN,of Bacillus subtilis (natto)[J].Bioscience Biotechnology & Biochemistry,1992,56(11):1 869-1 871.
[7] URANO T,IHARA H,UMEMURA K,et al.The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1[J].Journal of Biological Chemistry,2001,276(27):24 690.
[8] FUJITA M, ITO Y, HONG K,et al.Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin[J].Fibrinolysis,1995,9(3):157-164.
[9] DABBAGH F,NEGAHDARIPOUR M,BERENJIAN A,et al.Nattokinase:production and application[J].Applied Microbiology & Biotechnology,2014,98(22):9 199.
[10] 何孝天.Bacillus natto纳豆激酶的重组表达及热稳定性改造[D].无锡:江南大学,2014.
[11] BISCHOFF R,SCHLUTER.Amino acids:Chemistry,functionality and selected non-enzymatic post-translational modifications[J].Journal of Proteomics,2012,75(8):2 275.
[12] KATO A,TANIMOTO S,MURAKI Y,et al.Structural and functional properties of hen egg-white lysozyme deamidated by protein engineering[J].Journal of the Agricultural Chemical Society of Japan,1992,56(9):1 424.
[13] JAKOB F,MARTINEZ R,MANDAWE J,et al.Surface charge engineering of a Bacillus gibsonii subtilisin protease[J].Applied Microbiology & Biotechnology,2013,97(15):6 793-6 802.
[14] KHURANA J,SINGH R,KAUR J.Engineering of Bacillus lipase by directed evolution for enhanced thermal stability:effect of isoleucine to threonine mutation at protein surface[J].Molecular Biology Reports,2011,38(5):2 919.
[15] PANTOLIANO M W,WHITLOW M,WOOD J F,et al.Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding[J].Biochemistry,1989,28(18):7 205-7 213.
[16] DE K A,VAN D B B,VENEMA G,et al.The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease[J].Journal of Biological Chemistry,2002,277(18):15 432.
[17] JAOUADI B,AGHAJARI N,HASER R,et al.Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis[J].Biochimie,2010,92(4):360.
[18] MIYAZAKI K,WINTRODE,GRAYLING R,et al.Directed evolution study of temperature adaptation in a psychrophilic enzyme 1[J].Journal of Molecular Biology,2000,297(4):1 015-1 026.
[19] STUDIER F W.Protein production by auto-induction in high density shaking cultures[J].Protein Expression & Purification,2005,41(1):207-234.
[1] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[2] 刘瑞, 陶乐仁, 万康. 微波处理对‘新大坪'马铃薯贮藏品质的影响[J]. 食品与发酵工业, 2021, 47(5): 168-173.
[3] 周明, 朱晓娟, 尧梅香, 卢剑青, 陈卡卡, 朱凤妮, 陈金印, 沈勇根. ‘修水化红’甜橙成熟过程中黄酮含量与相关酶活性及抗氧化能力的关系[J]. 食品与发酵工业, 2021, 47(4): 60-67.
[4] 李泽洋, 伍时华, 龙秀锋, 吴军, 易弋. 米酒糖化菌的分离筛选鉴定及其性能研究[J]. 食品与发酵工业, 2021, 47(4): 188-194.
[5] 孙玉霞, 赵新节. 美极梅奇酵母的代谢特性及其在葡萄酒生产中的应用前景[J]. 食品与发酵工业, 2021, 47(4): 305-311.
[6] 李静竹, 胡梦君, 张建华. 蛋白质谷氨酰胺酶的重组表达与发酵条件优化[J]. 食品与发酵工业, 2021, 47(3): 294-301.
[7] 刘孝芳, 迟珺曦, 雷文平, 刘成国. 高胆盐水解酶活性乳酸菌的筛选及其酶活性影响因素研究[J]. 食品与发酵工业, 2020, 46(7): 63-68.
[8] 刘向丽, 李佥, 田晶, 费旭, 曾超, 张楠, 王勋. 柑橘果渣发酵产柚苷酶的工艺优化及固定化研究[J]. 食品与发酵工业, 2020, 46(5): 128-133.
[9] 徐玲, 宁喜斌. 辐照培养基适用性改善及Bacillus firmus GL3产过氧化氢酶对其适用性的影响[J]. 食品与发酵工业, 2020, 46(4): 99-105.
[10] 李冬龙, 李拂晓, 葛艳静, 谢彩锋, 刘继栋, 杭方学. 二次回归正交旋转组合设计优化富含γ-氨基丁酸豆酱制曲工艺[J]. 食品与发酵工业, 2020, 46(24): 159-166.
[11] 杨晓燕, 何云山, 谭周进, 肖丹, 曾钰婷, 曾晨. 不同剂量植物油对小鼠肠道微生物、酶活性及血常规的影响[J]. 食品与发酵工业, 2020, 46(20): 101-106.
[12] 董艺凝, 陈卫, 陈海琴, 赵建新, 陈永泉, 张灏. 嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)来源耐热β-半乳糖苷酶BgaB转糖苷催化活性改造[J]. 食品与发酵工业, 2020, 46(2): 1-6.
[13] 孙雨欣, 毛水芳, 陈银宁, 丁喆, 李雨潼, 夏玺越, 程浩, 冯思敏. 莼菜体外胶的分离及其体外功能活性研究[J]. 食品与发酵工业, 2020, 46(2): 55-60.
[14] 陈嘉, 高丽, 叶发银, 刘嘉, 赵国华. 基于视频与数字图像比色的甘薯多酚氧化酶活力检测[J]. 食品与发酵工业, 2020, 46(2): 246-251.
[15] 张志敏, 冉旭勇, 侯发民, 李建新, 李晓明, 章建军. 短波紫外线辐射处理对刺梨果实贮藏品质的影响[J]. 食品与发酵工业, 2020, 46(16): 201-207.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn