Please wait a minute...
 
 
食品与发酵工业  2018, Vol. 44 Issue (9): 15-21    DOI: 10.13995/j.cnki.11-1802/ts.017024
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于高通量测序和可培养方法的勐海发酵普洱茶细菌多样性分析
张欣1, 姚粟1*, 白飞荣1, 田海霞2, 赵婷1, 马跃2, 刘海新2, 李颂2, 郝彬秀2, 王春玲2
1 (中国食品发酵工业研究院有限公司,中国工业微生物菌种保藏管理中心,北京,100015)
2 (中国茶叶有限公司,北京,102209)
Analysis on bacterial diversity in Menhai fermented Pu-erh tea by high throughput sequencing and culture method
ZHANG Xin1, YAO Su1*, BAI Fei-Rong1, TIAN Hai-Xia2, ZHAO Ting1, MA Yue2, LIU Hai-xin2, LI Song2, HAO Bin-Xiu2, WANG Chun-Ling2
1(China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing 100015, China)
2(China Tea Co., Ltd., Beijing 102209, China)
下载:  PDF (2018KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以勐海地区百中堂茶厂发酵普洱茶为研究对象,采用高通量测序技术,并结合传统可培养方法,对普洱茶从晒青毛茶原料到发酵完成过程中9个时间节点的细菌多样性进行了研究。结果表明,普洱茶发酵过程中细菌多样性丰富。高通量测序数据分析到61个属,212个OTU,发酵前期以欧文氏菌属(Erwinia sp.)、泛菌属(Pantoea sp.)和假单胞菌属(Pseudomonas sp.)为主,而发酵中、后期芽胞杆菌属(Bacillus sp.)、葡萄球菌属(Staphylococcus sp.)、短杆菌属(Brevibacterium sp.)、考克氏菌属(Kocuria sp.)及小短杆菌属(Brachybacterium sp.)为优势菌群稳定存在。通过可培养方法,从发酵过程中分离到细菌18个属,30个种,优势菌属包括微杆菌属(Microbacterium sp.)、葡萄球菌属(Staphylococcus sp.)、小短杆菌属(Brachybacterium sp.)、考克氏菌属(Kocuria sp.)、泛菌属(Pantoea sp.)和芽胞杆菌属(Bacillus sp.)等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张欣
姚粟
白飞荣
田海霞
赵婷
马跃
刘海新
李颂
郝彬秀
王春玲
关键词:  发酵普洱茶  高通量测序  细菌多样性    
Abstract: The fermented Pu-erh tea collected from Baizhongtang tea factory in the area of Menhai was chosen as the research object, bacterial diversity of 9 stages during the post-fermentation process from sundried green tea to Pu-erh ripe tea was studied by high throughput sequencing combined with the traditional culture method. The results showed that the bacterial diversity was rich during the fermentation. 212 OTU belonging to 61 genera were detected by high-throughput sequencing technology from the whole process of Pu-erh tea fermentation. Erwinia sp., Pantoea sp. and Pseudomonas sp. were the main genera in the early stage. However, in the middle and late stage Bacillus sp., Staphylococcus sp., Brevibacterium sp., Brevibacterium sp. Kocuria sp. and Brachybacterium sp. were the dominant microflora. 30 species belonging to 18 genera were isolated by the cultured method. The dominant genera included Microbacterium sp., Staphylococcus sp., Brachybacterium sp., Kocuria sp., Pantoea sp. and Bacillus sp..
Key words:  fermented Pu-erh tea    high throughput sequencing    bacterial diversity
收稿日期:  2018-02-04                出版日期:  2018-09-25      发布日期:  2018-10-30      期的出版日期:  2018-09-25
基金资助: 北京市科技计划课题(Z161100000616012)
作者简介:  硕士,工程师(姚粟教授级高级工程师为通讯作者,E-mail:milly@china-cicc.org)。
引用本文:    
张欣,姚粟,白飞荣,等. 基于高通量测序和可培养方法的勐海发酵普洱茶细菌多样性分析[J]. 食品与发酵工业, 2018, 44(9): 15-21.
ZHANG Xin,YAO Su,BAI Fei-Rong,et al. Analysis on bacterial diversity in Menhai fermented Pu-erh tea by high throughput sequencing and culture method[J]. Food and Fermentation Industries, 2018, 44(9): 15-21.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.017024  或          http://sf1970.cnif.cn/CN/Y2018/V44/I9/15
[1] 边纪平.勐海:普洱茶名重天下[J].中国品牌,2017(2):78-79.
[2] 罗勇,徐平.西双版纳勐海县普洱茶产业发展现状初探[J].云南科技管理,2008,21(1):38-39.
[3] 云南省人民政府茶叶产业办公室.GB/T 22111—2008地理标志产品 普洱茶[S].北京:中国标准出版社, 2008.
[4] 朱广鑫,周红杰,赵明.普洱茶发酵技术研究进展[J].江西农业学报,2011,23(5):80-85.
[5] 张冬英,施兆鹏,刘亚林.普洱茶药理作用研究进展[J].福建茶叶,2005(1):43-44.
[6] 李敏.普洱茶品质形成的研究[D].广州:华南农业大学, 2006:50.
[7] 周红杰,李家华,赵龙飞,等.渥堆过程中主要微生物对云南普洱茶品质形成的研究[J].茶叶科学,2004,24(3):212-218.
[8] XU X,YAN M,ZHU Y.Influence of fungal fermentation on the development of volatile compounds in the Puer tea manufacturing process[J].Engineering in Life Sciences,2005,5(4):382-386.
[9] 张偎,肖海军,梁俊涛,等.普洱茶发酵过程中一种优势菌种的分离鉴定及其变化规律[J].食品工业科技,2012,33(19):88-91.
[10] 董文明,谭超,付晓萍,等.5种成品普洱茶中微生物的分离及其产酶特性研究[J].食品科技,2013(6):22-25.
[11] 姚静,陈迪,郑晓燕,等.普洱茶渥堆发酵过程中细菌种群的分离与分子鉴定[J].安徽农业科学,2013,41(6):2 667-2 668.
[12] 王辉,任丽,李亚莉,等.普洱茶发酵过程中不同层间细菌群落结构研究[J].食品安全质量检测学报,2015(5):1 567-1 574.
[13] 杨晓苹,罗剑飞,刘昕,等.普洱茶固态发酵过程中微生物群落结构及变化[J].食品科学, 2013,34(19):142-147.
[14] ABE M,TAKAOKA N,IDEMOTO Y,et al.Characteristic fungi observed in the fermentation process for Puer tea[J].International Journal of Food Microbiology,2008,124(2):199-203.
[15] 赵明,马燕,张冬莲,等.普洱熟茶后发酵过程细菌多样性的16S rRNA基因文库研究[C].中国科协年会第20分会场:科技创新与茶产业发展论坛.北京:中国科学技术协会学会学术部,2013.
[16] JI Y J,LEE S H,KIM J M,et al.Metagenomic analysis of kimchi,a traditional korean fermented food[J].Applied & Environmental Microbiology,2011,77(7):2 264-2 274.
[17] CAUCHIE E,GAND M,KERGOURLAY G,et al.The use of 16S rRNA gene metagenetic monitoring of refrigerated food products for understanding the kinetics of microbial subpopulations at different storage temperatures:the example of white pudding[J].International Journal of Food Microbiology,2017,247:70-78.
[18] NI K,WANG Y, CAI Y,et al.Natural lactic acid bacteria population and silage fermentation of whole-crop wheat[J]. Asian-Australasian Journal of Animal Sciences,2015,28(8):1 123-1 132.
[19] YOON S H,HA S M,KWON S,et al.Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J].International Journal of Systematic & Evolutionary Microbiology,2017,67(5):1 613-1 617.
[20] ZHANG Xin,LIU Yang,LIN Yafang,et al.Novosphingobium clariflavum sp. nov. isolated from a household product plant[J]. International Journal of Systematic & Evolutionary Microbiology,2017,67(9):3 150-3 155.
[21] WALTERS W,HYDE E R,BERGLYONS D,et al.Improved bacterial 16S rRNA gene(V4 and V4-5)and fungal internal transcribed spacer marker gene primers for microbial community surveys[J].Msystems,2016,1(1):e00009-15.
[22] FADROSH D W,BING M,GAJER P,et al.An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J].Microbiome,2014,2(1):6.
[23] MAGO T,SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics, 2011,27(21):2 957-2 963.
[24] EDGAR R C.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996.
[25] ABARENKOV K,NILSSON R H,LARSSONK H,et al.The UNITE database for molecular identification of fungi-recent updates and future perspectives[J].New Phytologist,2010,186(2):281-285.
[26] J GREGORY C,JUSTIN K,JESSE S.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(5):335-336.
[27] 葛慈斌,刘波,陈梅春,等.不同年份陈年普洱茶中芽胞杆菌的多样性[J].农业生物技术学报, 2017, 25(8):1 336-1 348.
[28] FAEZI GM, TAYERI A. Isolation and characterization of polyphenol oxidase and peroxidase-producing Bacillus strainer from fully fermented tea (Camellia sinensis)[J].World J Microbial Biotechnol,2007,24(3):1 327-1 332.
[29] WEI C L,CHAO S H,TSAI W B,et al.Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method[J].Food Microbiology,2013,33(2):252-261.
[30] PRAJAPATI K A,SHILPKAR P,DUNGRECHIYA A.Alkaline protease production from:Sorghum vulgare by Staphylococcus sciuri[J].Journal of Pure & Applied Microbiology,2015,9(1):441-447.
[31] 赵亚娟.富硝芹菜粉在发酵肉制品中使用功效的研究[D].无锡:江南大学,2012:21.
[32] SONDERGAAD A K,STAHNKE L H.Growth and aroma production by Staphylococcus xylosus, S. carnosus and S. equorum-a comparative study in model systems[J].International Journal of Food Microbiology,2002,75(1-2):99-109.
[33] LATORREMORATALLA M L,BOSCHFUSTE J,Bovercid S,et al.Contribution of enterococci to the volatile profile of slightly-fermented sausages[J]. LWT-Food Science and Technology,2011,44(1):145-152.
[34] O’HALLORAN R,BOCKELMANN W,O'CUINN G.Purification of an extracellular proteinase from Staphylococcus sciuri found on the surface of Tilsit cheese[J].Biochemical Society Transactions,1998,26(1):S29-S29.
[35] CORBIERE M S,LEROY S,TALON R.Staphylococcal community of a small unit manufacture traditional dry fermented sausages[J]. International Journal of Food Microbiology,2006,108(2):210-217.
[36] SCHLEIFER K H,KILPPER-BALZ R,DEVERIESE L A.Staphylococcus arlettae sp. nov., S. equorum sp. nov. and S. k1oosii sp. nov.:Three new coagulase-negative, novobiocin-resistant species from animals[J]. Systematic & Applied Microbiology,1984,5(4):501-509.
[37] 陈廷涛.发酵乳和豆豉中微生物菌群DGGE分析及益生作用研究[D].南昌:南昌大学,2013:34.
[38] TANAKA Y,WATANABE J,MOGI Y.Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis[J].Food Microbiology,2012,31(1):100-106.
[39] ONDA T,YANAGIDA F,TSUJI M,et al.Time series analysis of aerobic bacterial flora during Miso fermentation.[J].Letters in Applied Microbiology,2003,37(2):162.
[40] EUNJIN P,SEONGWOON R,MINSOO K,et al.Kocuria koreensis sp. nov., isolated from fermented seafood[J].International Journal of Systematic & Evolutionary Microbiology, 2010,60(1):140-143.
[41] BRENNAN N M,BROWN R, GOODFELLOW M,et al.Microbacterium gubbeenense sp. nov., from the surface of a smear-ripened cheese[J]. International Journal of Systematic & Evolutionary Microbiology,2001,51(6):1 969-1 976.
[42] ZHANG Guoxia,ZENG Guoqu,CAI Xiaowei,et al.Brachybacterium zhongshanense sp. nov., a cellulose-decomposing bacterium from sediment along the Qijiang River, Zhongshan City, China[J].International Journal of Systematic & Evolutionary Microbiology,2007,57(11):2 519-2 524.
[1] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[2] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[3] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[4] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[5] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[6] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
[7] 吴晓红, 高生平, 蒋彩云, 王清政. 榨菜发酵过程中原核微生物群落结构及其理化因子的动态演替[J]. 食品与发酵工业, 2021, 47(1): 27-34.
[8] 王俊钢, 李宇辉, 刘成江, 郭安民, 岳建平. 新疆哈萨克族传统风干肉中真菌多样性分析[J]. 食品与发酵工业, 2021, 47(1): 35-42.
[9] 刘振东, 毕娜, 李哲, 李梁, 罗章, 薛蓓, 汪雯翰. 西藏不同产区曲拉细菌群落结构的比较分析[J]. 食品与发酵工业, 2020, 46(6): 60-66.
[10] 崔梦君, 张振东, 万舒曼, 葛东颖, 郭壮. 农家豆瓣酱细菌多样性及其对品质影响的评价[J]. 食品与发酵工业, 2020, 46(5): 68-73.
[11] 陈可丹, 吴晓江, 陈延儒, 刘婷, 万茵, 刘成梅, 吴酬飞, 付桂明. 顶温对特香型大曲理化指标及菌群演替的影响[J]. 食品与发酵工业, 2020, 46(5): 52-58.
[12] 马江, 文鹏程, 罗俏俏, 曹磊, 朱艳, 杨敏, 张卫兵, 张忠明. 甘南牦牛曲拉中真菌群落结构[J]. 食品与发酵工业, 2020, 46(4): 51-56.
[13] 崔梦君, 王玉荣, 葛东颖, 张振东, 刘欣, 郭壮. 遵义地区莽椒细菌多样性及PICRUSt基因功能预测分析[J]. 食品与发酵工业, 2020, 46(4): 106-112.
[14] 文开勇, 汪月, 文鹏程, 朱艳, 杨敏, 张忠明, 张卫兵. 四川传统腊肉中微生物群落结构研究[J]. 食品与发酵工业, 2020, 46(3): 36-42.
[15] 戈子龙, 张泽金, 周爱梅, 陈松, 钟青萍. 基于高通量测序与培养方法分析新鲜佛手与老香黄中的细菌多样性[J]. 食品与发酵工业, 2020, 46(3): 250-256.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn