Please wait a minute...
 
 
食品与发酵工业  2018, Vol. 44 Issue (9): 41-47    DOI: 10.13995/j.cnki.11-1802/ts.017076
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
抑制呕吐毒素生物合成的乳酸菌的筛选及鉴定
罗炜1,2, 宋春艳2, 李彦林2, 张蔚2, 鲁心怡2, 曹钰1,2*
1(江南大学,教育部工业生物技术重点实验室,江苏 无锡,214122)
2(江南大学 生物工程学院,江苏 无锡,214122)
Screening and identification of lactic acid bacteria inhibiting the biosynthesis of deoxynivalenol
LUO Wei1,2, SONG Chun-yan2, LI Yan-lin2, ZHANG Wei2, LU Xin-yi2, CAO Yu1,2*
1(The Key Laboratory of Industrial Biotechnology,Ministry of Education,Jiangnan University,Wuxi 214122, China)
2(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
下载:  PDF (2233KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以禾谷镰刀菌ACCC36938为指示菌,测定不同乳酸菌对其抑制作用,筛选得到抑菌效果较强的1株乳酸菌A14-2。进一步研究不同温度、pH值和蛋白酶处理对乳酸菌A14-2抑菌活性的影响,结果表明pH值变化对其影响最大,同时也存在非蛋白类热敏感物质具有一定抑菌作用。为了探究乳酸菌A14-2对禾谷镰刀呕吐毒素(deoxynivalenol,DON)生物合成的影响,选用麦芽汁作为培养基,将乳酸菌和禾谷镰刀菌混合在麦芽汁培养基中共同培养,分析培养基中DON质量浓度变化,结果发现乳酸菌培养物及其上清液均能够在抑制禾谷镰刀菌生长的同时,也显著降低了DON的合成量,但乳酸菌细胞对DON无吸附作用。最后对乳酸菌A14-2进行理化及分子鉴定,显示其为植物乳杆菌(Lactobacillus plantarum)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗炜
宋春艳
李彦林
张蔚
鲁心怡
曹钰
关键词:  植物乳杆菌  禾谷镰刀菌  呕吐毒素  抑菌活性    
Abstract: The aim of this study was to screen lactic acid bacteria (LAB) inhibiting Fusarium graminearum ACCC36938 and a strain LAB A14-2 with strong antifungal effect was obtained. The effects of different temperature, pH value and protease treatment on the antifungal activity of LAB A14-2 were further studied. The results showed that the pH value had the greatest effect on the antibacterial activity of LAB A14-2, and non-protein heat-sensitive substances also had some antifungal activity. In order to investigate the effect of LAB A14-2 on the biosynthesis of deoxynivalenol (DON), LAB A14-2 and Fusarium graminearum were co-cultured on wort medium and DON content changes were analyzed. The results showed that LAB culture and supernatant were able to inhibit the growth of Fusarium graminearum and significantly reduce the amount of DON synthesis, but LAB cell can't bind DON. Finally, physiological and biochemical characteristics and molecular identification of LAB A14-2 showed that it was Lactobacillus plantarum.
Key words:  Lactobacillus plantarum    Fusarium graminearum    deoxynivalenol    antifungal activity
收稿日期:  2018-02-12                出版日期:  2018-09-25      发布日期:  2018-10-30      期的出版日期:  2018-09-25
基金资助: 啤酒用新酶创制与低碳制造关键技术研究,国家高技术发展(863)计划(2013AA102109);高等学校学科创新引智计划(111计划)资助项目(111-2-06);江苏高等优势学科建设工程资助项目(PAPD);江苏省现代工业发酵协同创新中心资助项目;江苏高校品牌专业建设工程资助项目(TAPP)
作者简介:  硕士研究生(曹钰副教授为通讯作者,E-mail:tsaoy5@jiangnan.edu.cn)。
引用本文:    
罗炜,宋春艳,李彦林,等. 抑制呕吐毒素生物合成的乳酸菌的筛选及鉴定[J]. 食品与发酵工业, 2018, 44(9): 41-47.
LUO Wei,SONG Chun-yan,LI Yan-lin,et al. Screening and identification of lactic acid bacteria inhibiting the biosynthesis of deoxynivalenol[J]. Food and Fermentation Industries, 2018, 44(9): 41-47.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.017076  或          http://sf1970.cnif.cn/CN/Y2018/V44/I9/41
[1] URREA C A, HORSLEY R D, STEFFENSON B J, et al. Heritability of Fusarium head blight resistance and deoxynivalenol accumulation from barley accession Clho4196[J]. Crop Science, 2002, 42:1 404-1 408.
[2] 杰彭, 吴晓鹏, 黄惠琴,等. 镰刀菌毒素研究进展[J]. 中国农业通报, 2009, 25(2):25-27.
[3] 许伟, 耿芳芳, 范梦雪,等. 脱氧雪腐镰刀菌烯醇毒性的研究进展[J]. 生物学杂志, 2016, 33(1):78-85.
[4] BLAGOJEV N, SKRINJAR M, VESKOVIC M, et al. Control of mould growth and mycotoxin production by lactic acid bacteria metabolites[J]. Romanian Biotechnological Letters, 2012, 17:7 219-7 226.
[5] TRIAS R, BANERAS, MONTESINOS E, et al. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi[J]. International microbiology, 2008, 11(4):231-236.
[6] VARSHA K K, PRIYA S, DEVENDRA L, et al. Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties[J]. Applied Biochemistry and Biotechnology, 2014, 172(7):3 402-3 413.
[7] LAVERMICOCCA P, FRANCESCA V, ANTONIO E, et al. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B[J]. Applied and Environmental Microbiology, 2000, 66(9):4 084-4 090.
[8] PEYTER L C, AXEL C, LYNCH K M, et al. Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate[J]. Food Control, 2016, 69:227-236.
[9] MGNUSSON J, STROM K, SJOGREN J, et al. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria[J]. FEMS Microbiology Letters, 2003, 29(1):129-135.
[10] GEREZ C L, TRRES M J, FONT V G, et al. Control of spoilage fungi by lactic acid bacteria[J]. Biological Control, 2013, 64(3):231-237.
[11] CIZEIKIENE D, JUODEIKIENE G, PASKEVICIUS A, et al. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread[J]. Food Control, 2013, 31(2):539-545.
[12] OLIVERIRA P, BROSNAN B, JACOB F, et al. Lactic acid bacteria bioprotection applied to the malting process. Part II: Substrate impact and mycotoxin reduction[J]. Food Control, 2015,51:444-452.
[13] 蒋雪薇, 盛灿梅, 周倩,等. 琼脂块法快速平板初筛米根霉L-乳酸高产菌[J]. 食品与机械, 2010,26(3):8-10.
[14] 胡晓丹. 禾谷镰刀菌拮抗菌的筛选鉴定及拮抗特性研究[D]. 南京:南京农业大学, 2014.
[15] FRANCO T S, GARCIA S, HIROOKA E Y, et al. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification[J]. Journal of Applied Microbiology, 2011, 111(3):739-748.
[16] 刘珊春, 赵欣, 李键,等. 高抗氧化乳酸菌的筛选鉴定[J]. 食品与发酵工业, 2017,43(8):59-66.
[17] NIDERKORN V, BOUDRA H, MORGAVI D P. Binding of Fusarium mycotoxins by fermentative bacteria in vitro[J]. Journal of Applied Microbiology, 2006, 101(4):849-856.
[18] ZOU Zhong-yi, HE Zhi-fei, LI Hong-jun, et al. In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria[J]. Food Science and Biotechnology, 2012, 21(6):1 677-1 683.
[1] 马申嫣, 王晶, 赵岩, 曹江, 翟齐啸, 张灏, 赵建新, 田丰伟, 陈卫. 以巧克力为载体的益生菌膳食补充剂的开发[J]. 食品与发酵工业, 2021, 47(9): 143-148.
[2] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[3] 张骏梁, 张诗玲, 吴佳慧, 许姗姗, 梁锦有, 徐颖. 一株红树林来源稀有放线菌的鉴定和抑菌活性物质的初步研究[J]. 食品与发酵工业, 2021, 47(8): 101-107.
[4] 刘耀耀, 刘哲, 李珊, 王金美, 叶英, 曹效海. 青藏高原狭果茶藨子对蜡样芽孢杆菌的抑菌活性及作用机理[J]. 食品与发酵工业, 2021, 47(6): 99-104.
[5] 冯华峰, 韩瑨, 王晓花, 吴正钧. 牛类芽孢杆菌BD3526发酵麦麸抑制变形链球菌的特性[J]. 食品与发酵工业, 2021, 47(5): 17-21.
[6] 曾兰君, 包晓玮, 赵紫叶, 段丽娟, 邹楠. 刺山柑萃取物抑菌活性及稳定性[J]. 食品与发酵工业, 2020, 46(8): 131-135.
[7] 易鑫, 周琦, 欧阳祝, 谈安群, 范佳莹, 李则灵, 朱霞建, 黄林华, 李贵杰, 王华. 乳酸菌富硒优化及其活性评价[J]. 食品与发酵工业, 2020, 46(8): 179-186.
[8] 胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业, 2020, 46(7): 161-166.
[9] 王玉林, 黄洁, 崔树茂, 唐鑫, 毛丙永, 赵建新, 张灏, 陈卫. 植物乳杆菌最适生长底物解析及高密度培养工艺[J]. 食品与发酵工业, 2020, 46(4): 19-27.
[10] 刘江, 程群, 王振兴, 孙健, 何雪梅, 刘大群, 周贵七, 熊智, 张雪春. 云南乳饼中乳酸菌的筛选及其功能活性[J]. 食品与发酵工业, 2020, 46(4): 160-166.
[11] 杨慧, 步雨珊, 刘奥, 刘同杰, 张兰威, 易华西. 产细菌素植物乳杆菌Q7对酸奶后酸化及品质的影响[J]. 食品与发酵工业, 2020, 46(3): 30-35.
[12] 汪雨晨, 陶阳, 李丹丹, 韩永斌, 姜小三, 姜应兵. 低频低强度超声波辅助植物乳杆菌发酵白果汁的代谢特性研究[J]. 食品与发酵工业, 2020, 46(22): 55-63.
[13] 黄玉龙, 孙若诗, 全婷, 刘燕, 慕钰文, 康三江, 张辉元. 利用菊糖生产L-乳酸的菌株筛选鉴定和发酵工艺优化[J]. 食品与发酵工业, 2020, 46(22): 161-166.
[14] 张月, 崔旋旋, 刘英学, 盖永强, 朴美子. 茯砖茶中冠突散囊菌的分离鉴定及其发酵工艺和生物活性研究[J]. 食品与发酵工业, 2020, 46(22): 202-207.
[15] 陈韫慧, 方思璇, 陈佳琪, 郭振新, 胡宇超, 艾连中, 王光强. 不同益生元对植物乳杆菌生长的影响[J]. 食品与发酵工业, 2020, 46(21): 28-33.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn