Please wait a minute...
 
 
食品与发酵工业  2018, Vol. 44 Issue (9): 53-60    DOI: 10.13995/j.cnki.11-1802/ts.017147
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
三株植物乳杆菌对代谢综合征大鼠肠道菌群的影响
朱广素1, 王刚1*, 王园园2*, 马方励2, 赵建新1, 张灏1, 陈卫1
1(江南大学 食品学院,江苏 无锡,214122)
2(无限极(中国)有限公司,广东 广州,510623)
Effects of three Lactobacillus plantarum strains on gut microbiota in metabolic syndrome rats
ZHU Guang-su1, WANG Gang1*, WANG Yuan-yuan2*, MA Fang-li2, ZHAO Jian-xin1, ZHANG Hao1, CHEN Wei1
1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
2(Infinitus (China) Company Ltd., Guangzhou 510623, China)
下载:  PDF (7106KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 分析3株不同来源的植物乳杆菌对高糖高脂饮食导致的代谢综合征大鼠肠道菌群的影响。给高糖高脂饮食的大鼠连续灌胃12周,3株不同来源的植物乳杆菌,以市售鼠李糖GG株作为对照,收集大鼠粪便;采用Illumina Miseq高通量测序技术分析菌群的多样性及物种组成。α-多样性分析发现,植物乳杆菌CCFM591可显著提高大鼠肠道的物种丰度及多样性;PCoA分析表明,高糖高脂饮食显著改变了大鼠的菌群结构,灌胃植物乳杆菌可一定程度地改善菌群紊乱;进一步分析菌群的组成,发现灌胃CCFM591显著降低了由高脂饮食导致的Firmicutes/Bacteroidetes和Proteobacteria/Bacteroidetes的高比值;属水平分析显示,植物乳杆菌灌胃显著提高了大鼠肠道中Lactabacillus的相对丰度,同时降低了BlautiaCoprococcusRoseburia[Ruminococcus]的相对丰度。植物乳杆菌CCFM591在高糖高脂饮食导致的大鼠肠道菌群的失调方面表现出较强的调节能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱广素
王刚
王园园
马方励
赵建新
张灏
陈卫
关键词:  植物乳杆菌  宏基因组学  高糖高脂饮食  代谢综合征  肠道菌群    
Abstract: The effects of three L. plantarum strains from different sources on intestinal microflora in rats with metabolic syndrome induced by high-fat-high-sucrose(HFHS)diet were evaluated. Three L. plantarum strains from different sources were individually administered to rats fed a HFHS diet for 12 weeks. Using commercial probiotic Lactobacillus rhamnose GG as a strain control, faecal samples were collected at the end of the experiment. The microbial diversity and composition were measured by Illumina Miseq Sequencing. L. plantarum CCFM591 significantly increased the abundance and microbial diversity of intestinal microbiota by α diversity analysis. PCoA analysis showed that HFHS diet changed the overall structure of microbial community. L. plantarum supplementation displayed various effects on the recovery of gut microbiota dysbiosis. Metagenomic analysis showed that CCFM591 dramatically decreased the ratio of Firmicutes/Bacteroidetes and Proteobacteria/Bacteroidetes induced by HFHS diet. Supplementation with L. plantarum increased the relative abundance of Lactabacillus, and decreased the abundance of Blautia,Coprococcus,Roseburia and [Ruminococcus] at genus level. L. plantarum CCFM591 showed a strong capacity in regulating the gut microbiota dysbiosis induced by HFHS diet.
Key words:  Lactobacillus plantarum    metagenomic    metabolic syndrome    gut microbiota
收稿日期:  2018-03-02                出版日期:  2018-09-25      发布日期:  2018-10-30      期的出版日期:  2018-09-25
基金资助: 国家食品科学与工程一流学科建设项目(JUFSTR 20180102)
作者简介:  硕士(王刚与王园园为本文共同通讯作者,E-mail:wanggang@jiangnan.edu.cn,Yoyo.WANG@infinitus-int.com)。
引用本文:    
朱广素,王刚,王园园,等. 三株植物乳杆菌对代谢综合征大鼠肠道菌群的影响[J]. 食品与发酵工业, 2018, 44(9): 53-60.
ZHU Guang-su,WANG Gang,WANG Yuan-yuan,et al. Effects of three Lactobacillus plantarum strains on gut microbiota in metabolic syndrome rats[J]. Food and Fermentation Industries, 2018, 44(9): 53-60.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.017147  或          http://sf1970.cnif.cn/CN/Y2018/V44/I9/53
[1] WANG Y, BEYDOUN M A, LIANG L, et al. Will all americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic[J]. Obesity, 2008, 16(10):2 323-2 330.
[2] ECKEL R H, ALBERTI K G M M, GRUNDY S M, et al. The metabolic syndrome[J]. Lancet, 2015, 365(9 468):1 415-1 428.
[3] LEY R. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7 122):1 022-1 023.
[4] ZMORA N, BASHIARDES S, LEVY M, et al. The role of the immune system in metabolic health and disease[J]. Cell Metabolism, 2017, 25(3):506-521.
[5] QIN J, LI Y, CAI Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2013, 490(7418):55-60.
[6] HAND T W, VUJKOVIC-CVIJIN I, RIDAURA V K, et al. Linking the microbiota, chronic disease, and the immune system[J]. Trends in Endocrinology & Metabolism Tem, 2016, 27(12):831-843.
[7] MACFARLANE G T, MACFARLANE S. Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut[J]. Current Opinion in Biotechnology, 2007, 18(2):156-162.
[8] VIJAYKUMAR M, AITKEN J D, CARVALHO F A, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5[J]. Science, 2010, 328(5 975):228-231.
[9] GAFFEN S L, JAIN R, GARG A V, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing[J]. Nature Reviews Immunology, 2014, 14(9):585-600.
[10] DUPONT A W, DUPONT H L. The intestinal microbiota and chronic disorders of the gut[J]. Nature Reviews Gastroenterology & Hepatology, 2011, 8(9):523-531.
[11] BROWN J M, HAZEN S L. Microbial modulation of cardiovascular disease[J]. Nature Reviews Microbiology, 2018,16(3):171-181.
[12] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7 484):559-563.
[13] GIBSON G R, PROBERT H M, LOO J V, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics[J]. Nutrition Research Reviews, 2004,17(2):259-275.
[14] MACCALLUM I, PRZYBYLSKI D, GNERRE S, et al. ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads[J]. Genome Biology, 2009, 10(10):R103.
[15] LOMAN N J, CONSTANTINIDOU C, CHAN J Z, et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity[J]. Nature Reviews Microbiology, 2012, 10(9):599-606.
[16] SABIROVA J S, XAVIER B B, COPPENS J, et al. Whole-genome typing and characterization of blaVIM19-harbouring ST383 Klebsiella pneumoniae by PFGE, whole-genome mapping and WGS[J]. Journal of Antimicrobial Chemotherapy, 2016, 71(6):1 501-1 509.
[17] TYAGI A K, SAHDEO P. Commentary: Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis[J]. Frontiers in Microbiology, 2015, 5:766.
[18] MAO B, LI D, ZHAO J, et al. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice[J]. Journal of Agricultural & Food Chemistry, 2015, 63(3):856-863.
[19] 毛丙永. 功能性低聚糖对肠道细菌的影响及机制[D]. 无锡:江南大学, 2015.
[20] BI Y, LI C, LIU L, et al. IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice[J]. Science Bulletin, 2017, 62(15):1 052-1 063.
[21] WANG J, TANG H, ZHANG C, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice[J]. Isme Journal, 2015, 9(1):1-15.
[22] KIM S W, PARK K Y, KIM B, et al. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production[J]. Biochemical & Biophysical Research Communications, 2013, 431(2):258-263.
[23] WEST N P, PYNE D B, CRIPPS A, et al. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals[J]. Gut Microbes, 2012, 3(3):221-227.
[24] CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6):1 470-1 481.
[25] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7 122):1 027-1 231.
[26] LIM S M, KIM D H. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota[J]. Nutrition Research, 2017, 41:86-96.
[27] BOSSHARD P P, ZBINDEN R M. Turicibacter sanguinis gen. nov. sp nov. a novel anaerobic, gram-positive bacterium[J]. International Journal of Systematic & Evolutionary Microbiology, 2002, 52(4):1 263-1 266.
[28] PRESLEY L L, WEI B, BRAUN J, et al. Bacteria associated with immunoregulatory cells in mice[J]. Applied & Environmental Microbiology, 2010, 76(3):936-941.
[29] DUNCAN S H, BELENGUER A, HOLTROP G, et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J]. Applied & Environmental Microbiology, 2007, 73(4):1 073-1 078.
[30] JAKOBSDOTTIR G, XU J, MOLIN G, et al. High-fat Diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects[J]. Plos One, 2013, 8(11):e80476.
[1] 马申嫣, 王晶, 赵岩, 曹江, 翟齐啸, 张灏, 赵建新, 田丰伟, 陈卫. 以巧克力为载体的益生菌膳食补充剂的开发[J]. 食品与发酵工业, 2021, 47(9): 143-148.
[2] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[3] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[4] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[5] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[6] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[7] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[8] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[9] 易鑫, 周琦, 欧阳祝, 谈安群, 范佳莹, 李则灵, 朱霞建, 黄林华, 李贵杰, 王华. 乳酸菌富硒优化及其活性评价[J]. 食品与发酵工业, 2020, 46(8): 179-186.
[10] 胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业, 2020, 46(7): 161-166.
[11] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[12] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[13] 王玉林, 黄洁, 崔树茂, 唐鑫, 毛丙永, 赵建新, 张灏, 陈卫. 植物乳杆菌最适生长底物解析及高密度培养工艺[J]. 食品与发酵工业, 2020, 46(4): 19-27.
[14] 刘江, 程群, 王振兴, 孙健, 何雪梅, 刘大群, 周贵七, 熊智, 张雪春. 云南乳饼中乳酸菌的筛选及其功能活性[J]. 食品与发酵工业, 2020, 46(4): 160-166.
[15] 杨慧, 步雨珊, 刘奥, 刘同杰, 张兰威, 易华西. 产细菌素植物乳杆菌Q7对酸奶后酸化及品质的影响[J]. 食品与发酵工业, 2020, 46(3): 30-35.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn