Please wait a minute...
食品与发酵工业  2018, Vol. 44 Issue (12): 274-280    DOI: 10.13995/j.cnki.11-1802/ts.017859
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
1(西南大学 食品科学学院,重庆,400715)
2(西南大学 重庆市特色食品工程技术研究中心,重庆,400715)
Catalytic mechanisms of microbial transglutaminase in modification of protein and its applications in food processing
LI Ming-qi1, HE Zhi-fei1,2, LI Hong-jun1,2*1
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(Chongqing Engineering Research Center of Regional Food, Chongqing 400715, China)
下载:  HTML   PDF (878KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 谷氨酰胺转氨酶(transglutaminase,EC2.3.2.13,TGase)是一种能够催化蛋白质发生聚合反应的酶类,来源于动物、植物和微生物,该酶可以催化蛋白质发生交联、脱酰胺和糖基化反应,从而改变蛋白质的功能性质,提高食品的营养、风味和口感。其中微生物源谷氨酰胺转氨酶(microbial transglutaminase, MTGase)在食品中应用最广泛。该文主要介绍MTGase的酶学性质、活性结构以及上述3种反应的催化机理,并根据机理分类阐述了MTGase在食品工业近年的应用,以期对MTGase的深入研究和在食品工业化应用等方面提供理论依据。
E-mail Alert
关键词:  微生物转谷氨酰胺酶(MTGase)  反应机理  蛋白质修饰  功能性质    
Abstract: Transglutaminase (EC2.3.2.13, TGase), derived from animals, plants or microorganisms, specifically catalyzes the cross linking, deamidation or glycosylation of protein and hence changes the functional properties of protein and improves the nutrition, flavor and taste of food. Among them, microbial transglutaminase (MTGase) is widely used in food processing. Recent research achievements on properties, active structure, catalytic mechanisms of MTGase and its application in the food industry were introduced and summarized, for the sake of providing theoretical basis for further study.
Key words:  microbial transglutaminase(MTGase)    catalytic mechanisms    protein modification    functional property
收稿日期:  2018-05-24                出版日期:  2018-12-25      发布日期:  2019-01-22      期的出版日期:  2018-12-25
基金资助: 重庆市食草牲畜产业技术体系(Y201706);重庆市特色食品工程技术研究中心能力提升项目(cstc2014pt-gc8001)
作者简介:  硕士研究生(李洪军教授为通讯作者,。
李明奇,贺稚非,李洪军. 微生物源谷氨酰胺转胺酶修饰蛋白质机理及其在食品方面的应用进展[J]. 食品与发酵工业, 2018, 44(12): 274-280.
LI Ming-qi,HE Zhi-fei,LI Hong-jun. Catalytic mechanisms of microbial transglutaminase in modification of protein and its applications in food processing[J]. Food and Fermentation Industries, 2018, 44(12): 274-280.
链接本文:  或
[1] DEJONG G A H, KOPPELMAN S J. Transglutaminase catalyzed reactions: impact on food applications[J]. Journal of Food Science. 2002, 67(8): 2 798-2 806.<br /> [2] AALAMI M, LEELAVATHI K. Effect of microbial transglutaminase on spaghetti quality[J]. Journal of Food Science. 2008, 73(5): C306-C312.<br /> [3] ANDO H, ADACHI M, UMEDA K, et al. Purification and characteristics of a novel transglutaminase derived from microorganisms[J]. Journal of the Agricultural Chemical Society of Japan,1989,53(10):2 613-2 617.<br /> [4] ZHU Y, RINZEMA A, BONARIUS H P J, et al. Microbial transglutaminase production by <i>Streptoverticillium mobaraense</i>: analysis of amino acid metabolism using mass balances[J]. Enzyme & Microbial Technology, 1998, 23(3-4): 216-226.<br /> [5] KIM H S, JUNG S H, LEE I S, et al. Production and characterization of a novel microbial transglutaminase from <i>Actinomadura</i> sp. T2[J]. Journal of Microbiology & Biotechnology, 2000, 10(2): 187-194.<br /> [6] DESOUZA C F V, HECK J X, AYUB M A Z. Solid state bioreactor production of transglutaminase by Amazonian <i>Bacillus circulans</i> BL32 strain[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(12): 1 677-1 685.<br /> [7] CUI L, DU G, ZHANG D, et al. Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus[J]. Food Chemistry, 2007, 105(2): 612-618.<br /> [8] KOBAYASHI K, SUZUKI S, IZAWA Y, et al. Transglutaminase in sporulating cells of Bacillus subtilis[J]. Journal of General & Applied Microbiology, 1998, 44(1): 85-91.<br /> [9] KLEIN J D, GUZMAN E, KUEHN G D. Purification and partial characterization of transglutaminase from <i>Physarum polycephalum</i>[J]. Journal of Bacteriology, 1992, 174(8): 2 599-2 605.<br /> [10] YURIMOTO H, YAMANE M, KIKUCHI Y, et al. The pro-peptide of <i>Streptomyces mobaraensis</i> transglutaminase functions in cis and in <i>trans</i> to mediate efficient secretion of active enzyme from methylotrophic yeasts[J]. Bioscience Biotechnology & Biochemistry, 2004, 68(10): 2 058-2 069.<br /> [11] YASUEDA H, KUMAZAWA Y, MOTOKI M. Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major)[J]. Bioscience Biotechaology and Biocheaistry, 1994, 58(11): 2 041-2 045.<br /> [12] KASHIWAGI T, YOKOYAMA K, ISHIKAWA K, et al. Crystal structure of microbial transglutaminase from <i>Streptoverticillium mobaraense</i>[J]. The Journal of Biological Chemistry, 2002, 277(46): 44 252-44 260.<br /> [13] SHLEIKIN A G, DANILOV N P. Evolutionary-biological peculiarities of transglutaminase. Structure, physiological functions, application[J]. Journal of Evolutionary Biochemistry & Physiology, 2011, 47(1): 1-14.<br /> [14] NOGUCHI K, ISHIKAWA K, YOKEYAMA K, et al. Crystal structure of red sea bream transglutaminase[J]. Journal of Biological Chemistry, 2001, 276(15): 12 055-12 059.<br /> [15] MILCZEK E M. Commercial applications for enzyme-mediated protein conjugation: New developments in enzymatic processes to deliver functionalized proteins on the commercial scale[J]. Chemical Reviews, 2017,118(1):119-141.<br /> [16] GASPAR A L C, DE G ESFAVONI S P. Action of microbial transglutaminase (MTGase) in the modification of food proteins: a review[J]. Food Chemistry, 2015, 171: 315-322.<br /> [17] HAN X Q, DAMODARAN S. Thermodynamic compatibility of substrate proteins affects their cross-linking by transglutaminase[J]. Journal of Agricultural & Food Chemistry. 1996, 44(5): 1 211-1 217.<br /> [18] DEG ESFAVONI S P, BUENO F R. Microbial Transglutaminase: General characteristics and performance in food processing technology[J]. Food Biotechnology, 2014, 28(1): 1-24.<br /> [19] LERNER A, MATTHIAS T. Possible association between celiac disease and bacterial transglutaminase in food processing: a hypothesis[J]. Nutrition Reviews, 2015, 73(8): 544-552.<br /> [20] OHTSUKA T, UMEZAWA Y, NIO N, et al. Comparison of deamidation activity of transglutaminases[J]. Journal of Food Science, 2010, 66(1): 25-29.<br /> [21] HRYNETS Y, NDAGIJIMANA M, BETTI M. Transglutaminase-catalyzed glycosylation of natural actomyosin (NAM) using glucosamine as amine donor: Functionality and gel microstructure[J]. Food Hydrocolloids, 2014, 36: 26-36.<br /> [22] LESIOW T, RENTFROW G K, XIONG Y L. Polyphosphate and myofibrillar protein extract promote transglutaminase-mediated enhancements of rheological and textural properties of PSE pork meat batters[J]. Meat Science, 2017, 128: 40-46.<br /> [23] HONG G P, XIONG Y L. Microbial transglutaminase-induced structural and rheological changes of cationic and anionic myofibrillar proteins[J]. Meat Science, 2012, 91(1): 36-42.<br /> [24] ABDULATEFMRGHNI A, RUMIKO K, SATOSHI K, et al. Dependence of microbial transglutaminase on meat type in myofibrillar proteins cross-linking[J]. Food Chemistry, 2009, 112(2): 354-361.<br /> [25] ROMEIH E, WALKER G. Recent advances on microbial transglutaminase and dairy application[J]. Trends in Food Science & Technology, 2017, 62:133-140.<br /> [26] CHEN L, LI Y, HAN J, et al. Influence of transglutaminase-induced modification of milk protein concentrate (MPC) on yoghurt texture[J]. International Dairy Journal, 2017,78:65-72.<br /> [27] TAGHI S G, KOUBAA M, BARBA F J, et al. Recent advances in the application of microbial transglutaminase crosslinking in cheese and ice cream products: A review.[J]. International Journal of Biological Macromolecules, 2017, 107(B): 2 364-2 374.<br /> [28] GAN C Y, CHENG L H, EASA A M. Assessment of cross-linking in combined cross-linked soy protein isolate gels by microbial transglutaminase and Maillard reaction[J]. Journal of Food Science, 2009, 74(2): C141-C146.<br /> [29] AGYARE K K, ADDO K, XIONG Y L. Emulsifying and foaming properties of transglutaminase-treated wheat gluten hydrolysate as influenced by pH, temperature and salt[J]. Food Hydrocolloids, 2009, 23(1): 72-81.<br /> [30] HONG G P, MIN S G, CHIN K B. Emulsion properties of pork myofibrillar protein in combination with microbial transglutaminase and calcium alginate under various pH conditions[J]. Meat Science, 2012, 90(1): 185-193.<br /> [31] YANG M, SHI Y, WANG P, et al. Effect of succinylation on the functional properties of yak caseins: a comparison with cow caseins[J]. Dairy Science & Technology, 2014, 94(4): 359-372.<br /> [32] ONYANGO C, MUTUNGI C UNBEHEND G, et al. Rheological and baking characteristics of batter and bread prepared from pregelatinised cassava starch and sorghum and modified using microbial transglutaminase[J]. Journal of Food Engineering, 2010, 97(4): 465-470.<br /> [33] ROSSA P N, DES E M F, BURIN V M, et al. Optimization of microbial transglutaminase activity in ice cream using response surface methodology[J]. LWT - Food Science and Technology, 2011, 44(1): 29-34.<br /> [34] ROSSA P N, BURIN V M, BORDIGNONLUI Z M T. Effect of microbial transglutaminase on functional and rheological properties of ice cream with different fat contents[J]. LWT - Food Science and Technology, 2012, 48(2): 224-230.<br /> [35] PAKSERESHT S, TEHRANI M, RAZAVI S M A. Optimization of low-fat set-type yoghurt: effect of altered whey protein to casein ratio, fat content and microbial transglutaminase on rheological and sensorial properties[J]. Journal of Food Science & Technology, 2017, 54(8): 2 351-2 360.<br /> [36] RODRIGUEZNOGALES J M. Enhancement of transglutaminase-induced protein cross-linking by preheat treatment of cows′ milk: A statistical approach[J]. International Dairy Journal, 2006, 16(1): 26-32.<br /> [37] BABIKER E E. Effect of transglutaminase treatment on the functional properties of native and chymotrypsin-digested soy protein[J]. Food Chemistry, 2000, 70(2): 139-145.<br /> [38] ALI N A, AHMED S H, MOHAMED E S A, et al. Effect of transglutaminase cross linking on the functional properties as a function of NaCl concentration of legumes protein isolate[J]. International Journal of Biological & Life Sciences, 2010, 7(1): 8-12.<br /> [39] BEANDS C M, ALINK G M, VANBOEKEL M A J S, et al. Mutagenicity of heated sugar-casein systems: effect of the Maillard reaction[J]. Journal of Agricultural & Food Chemistry, 2000, 48(6): 2 271-2 275.<br /> [40] VILLALONGA R, FERN NDEZ M, FRAGOSO A, et al. Thermal stabilization of trypsin by enzymic modification with β-cyclodextrin derivatives[J]. Biotechnology & Applied Biochemistry, 2003, 38(1): 53-59.<br /> [41] 姜淑娟,冯镇,赵新淮. 酪蛋白的转谷氨酰胺酶酶促糖基化交联条件及产物性质[J]. 中国乳品工业, 2011(7): 25-28.<br /> [42] JIANG S J, FENG Z, ZHAO X H. Optimal conditions to glycosylate and cross-link casein by transglutaminase and some functional properties of the modified product[J]. Food and Fermentation Industries,2011(7):25-28.<br /> [43] SONG C L, ZHAO X H. Structure and property modification of an oligochitosan-glycosylated and crosslinked soybean protein generated by microbial transglutaminase[J]. Food Chemistry, 2014, 163: 114-119.<br /> [44] 周利敏,刘晓兰,刘玥,等. TGase催化玉米醇溶蛋白糖基化改性[J]. 食品科学, 2014, 35(24): 15-19.<br /> [45] ZHOU L M, LIU X L, LIU Y, et al. TGase-catalyzed Glycosylation of Zein[J]. Food Science,2014,35(24):15-19.<br /> [46] HONG P K, GOTTARDI D, NDAGIJIMANA M, et al. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity[J]. Food Chemistry, 2014, 142: 285-293.<br /> [47] GOTTARDI D, HONG P K, NDAGIJIMANA M, et al. Conjugation of gluten hydrolysates with glucosamine at mild temperatures enhances antioxidant and antimicrobial properties[J]. LWT - Food Science and Technology, 2014, 57(1): 181-187.<br /> [48] YUAN F, LV L, LI Z, et al. Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (metapenaeusensis) tropomyosin[J]. Food Chemistry, 2017, 219: 215-222.<br /> [49] WANG X J, ZHENG X Q, LIU X L, et al. Preparation of glycosylated zein and retarding effect on lipid oxidation of ground pork[J]. Food Chemistry, 2017, 227(15): 335.<br /> [50] YAO X J, ZHAO X H. Pre-deamidation of soy protein isolate exerts impacts on transglutaminase -induced glucosamine glycation and cross-linking as well as properties of the products [J]. Journal of the Science of Food and Agriculture, 2016, 96(7): 2 418-2 425.
[1] 李丹丹, 谢盛莉, 马良, 侯勇, 付余, 张宇昊. 水溶性蚕蛹蛋白功能特性探究[J]. 食品与发酵工业, 2021, 47(4): 7-14.
[2] 李懿璇, 王悦, 鲁小川, 康梦瑶, 尚永彪. 红曲红添加量对猪肉肌原纤维蛋白功能性质和结构的影响[J]. 食品与发酵工业, 2020, 46(2): 173-179.
[3] 高柳, 向琴, 李佳釔, 刘娟, 陈婵, 车振明, 刘平. 黑米蛋白的功能与结构性质[J]. 食品与发酵工业, 2019, 45(4): 89-94.
[4] 马梦娇, 荆慧娟, 符安卫, 王洪新, 吕文平. 中华鳖腿肉蛋白的理化性质[J]. 食品与发酵工业, 2019, 45(22): 110-116.
[5] 刘丽莉, 李玉, 杨陈柳, 等. 糖基化卵白蛋白肽的制备工艺优化及特性与结构分析[J]. 食品与发酵工业, 2018, 44(8): 181-187.
[6] 李长乐, 王琛, 郭全友, 等.. 超声波、超高压处理对鲣鱼肌原纤维蛋白功能性质的影响[J]. 食品与发酵工业, 2018, 44(7): 96-101.
[7] 蔡路昀,马帅,李秀霞,吕艳芳,赵元晖,林洪,励建荣. 不同提取方法对鲽鱼皮胶原蛋白结构特征和功能性质的影响[J]. 食品与发酵工业, 2017, 43(5): 240-.
[8] 周心雅, 贺稚非, 李洪军, 等 . 酸碱度对兔肉肌原纤维蛋白功能性质的影响[J]. 食品与发酵工业, 2017, 43(11): 172-.
[9] 贾娜,王乐田,马露,王欢,邵俊花,宋立,刘登勇. 香辛料提取物对猪肉肌原纤维蛋白功能性质的影响[J]. 食品与发酵工业, 2016, 42(2): 82-.
[10] 段邓乐,涂宗财,王辉,沙小梅,黄涛. 微波固相合成糖基化卵清蛋白及其理化功能特性研究[J]. 食品与发酵工业, 2016, 42(11): 48-.
[11] 吴娜,刘凌,周明,孙慧,李国明,姜忠杰. 膜技术回收马铃薯蛋白的基本性能[J]. 食品与发酵工业, 2015, 41(8): 101-.
[12] 于红,柴文杰,王聪,敬思群. 马齿苋籽粕蛋白功能性质分析及应用[J]. 食品与发酵工业, 2015, 41(7): 137-.
[13] 王洋,叶阳,王晓燕,乔燕娟,代路谣. 不同碱液对含盐蛋清功能性质的影响[J]. 食品与发酵工业, 2015, 41(6): 138-.
[14] 聂小华,龚燕丹,许丹,沈燕飞. 酸法脱酰胺处理对大米蛋白功能特性的影响[J]. 食品与发酵工业, 2015, 41(5): 85-.
[15] 程力,张献梅,顾正彪,洪雁,李兆丰,李才明. 纤维素酶法制备马铃薯渣可溶性膳食纤维的理化及功能性质[J]. 食品与发酵工业, 2015, 41(11): 41-.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持