Please wait a minute...
 
 
食品与发酵工业  2018, Vol. 44 Issue (11): 313-318    DOI: 10.13995/j.cnki.11-1802/ts.017925
  本期目录 | 过刊浏览 | 高级检索 |
沙雷氏蛋白酶及其专一性抑制剂的研究进展
张琳桓1,2, 孙谧1, 王伟1, 孙晶晶1, 刘均忠1, 郝建华1,3*
1(农业农村部极地渔业开发重点实验室,中国水产科学研究院 黄海水产研究所,山东 青岛,266071)
2(上海海洋大学 食品学院,上海,201306)
3(江苏省海洋生物产业技术协同创新中心,江苏 连云港,222005)
Research progress of serralysin and its inhibitor
ZHANG Lin-huan1,2, SUN Mi1, WANG Wei1, SUN Jing-jing1, LIU Jun-zhong1, HAO Jian-hua1,3*
1(Key Laboratory Sustainable Development of Polar Fishery,Ministry of Agriculture and Rural Affairs,The Yellow Sea Fisheries Research Institute of Chinese Academy of Fishery Sciences,Qingdao 266071, China)
2(College of Food Science & Technology,Shanghai Ocean University,Shanghai 201306, China)
3(Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource,Jiangsu 222005, China)
下载:  HTML   PDF (2650KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 沙雷氏蛋白酶属于锌金属蛋白酶M10B亚家族,存在于各种致病性革兰氏阴性细菌中。通常具有毒性,是一些疾病的关键致病因子。沙雷氏蛋白酶抑制剂是治疗这些疾病的有效药物,并且可以避免病原菌中的抗生素产生抗性。对沙雷氏蛋白酶和其抑制剂分别进行了综述,并简述了4种沙雷氏蛋白酶与抑制剂复合物相互作用的实例,以期为进一步了解沙雷氏蛋白酶的分泌调控机理和设计新型蛋白酶抑制剂药物提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张琳桓
孙谧
王伟
孙晶晶
刘均忠
郝建华
关键词:  沙雷氏蛋白酶  沙雷氏蛋白酶抑制剂  复合物  结构    
Abstract: Serralysin belongs to the subfamily of zinc metalloprotease M10B and is secreted by a variety of pathogenic gram-negative bacteria. It is a key virulence factor for some diseases. Serralysin inhibitor is an effective drug for treating these diseases and it can prevent antibiotic resistance in pathogenic bacteria. In this paper, serralysin and its inhibitor were reviewed, respectively. Four complexes of them were briefly described, in order to further understand the mechanism of the secretion of serralysin and to provide reference for designing novel inhibitor drugs.
Key words:  serralysin;serralysin inhibitor;complexes;structure
收稿日期:  2018-05-31                出版日期:  2018-11-25      发布日期:  2018-12-25      期的出版日期:  2018-11-25
基金资助: 国家实验室-鳌山科技计划(2016ASKJ14);青岛海洋科学与技术国家实验室海洋生物学与生物技术功能实验室资助(OF2018NO05)
作者简介:  硕士研究生(郝建华研究员为通讯作者,E-mail:haojh@ysfri.ac.cn)。
引用本文:    
张琳桓,孙谧,王伟,等. 沙雷氏蛋白酶及其专一性抑制剂的研究进展[J]. 食品与发酵工业, 2018, 44(11): 313-318.
ZHANG Lin-huan,SUN Mi,WANG Wei,et al. Research progress of serralysin and its inhibitor[J]. Food and Fermentation Industries, 2018, 44(11): 313-318.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.017925  或          http://sf1970.cnif.cn/CN/Y2018/V44/I11/313
[1] 尹静. 沙雷氏菌产耐有机溶剂蛋白酶的研究[D]. 无锡:江南大学, 2011.
[2] 黄志强. 产碱性蛋白酶海洋细菌的筛选及其基因克隆[D]. 福州:福建农林大学, 2006.
[3] TURK V. Proteases: new perspectives[M]. Boston, Berlin: Birkhuser Verlag, Basel, 1999.
[4] 巩晓芳,张宗舟,薛林贵. 蛋白酶的研究进展[J]. 中国食品工业, 2011 (10):50-52.
[5] 胡学智,王俊. 蛋白酶生产和应用的进展[J]. 工业微生物, 2008, 38(4):49-61.
[6] 梁高丽,谢占玲. 微生物源金属蛋白酶的研究进展[J]. 青海畜牧兽医杂志, 2017, 47(3):45-48.
[7] JIANG Wei-ping, BOND J S. Families of metalloendopeptidases and their relationships[J]. FEBS Letters, 1992, 312(2-3):110-114.
[8] HOOPER N M. Families of zinc metalloproteases[J]. FEBS Letters, 1994, 354(1):1-6.
[9] BASU B, APTE S K. A novel serralysin metalloprotease from Deinococcus radiodurans[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008, 1 784(9):1 256-1 264.
[10] 闫鸿斌. 四种绦虫蛋白酶及其抑制剂的系统挖掘与功能分析[D]. 北京:中国农业科学院, 2013.
[11] RAWLINGS N D, BARRETT A J. Chapter 77-introduction: metallopeptidases and their clans. Handbook of Proteolytic Enzymes[M]. 3rd ed.Manhattan, New York: Acodemic Press, 2013:325-370.
[12] BODE W, Gomis-Rüth F X, HUBER R, et al. Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases[J]. Nature, 1992, 358(6 382):164-167.
[13] STÕCKER W, GRAMS F, BAUMANN U, et al. The metzincins-topological and sequential relations between the astacins,adamalysins,serralysins,and matrixins (collagenases) define a superfamily of zinc-peptidases[J]. Protein Science, 1995, 4(5):823-840.
[14] 郑媛,盛军,纪晓峰,等. 锌金属蛋白酶家族的结构与催化机理[J]. 中国生物化学与分子生物学报, 2013(8):719-726.
[15] 孙谧,郝建华,王伟,等. 海洋细菌新型低温碱性蛋白酶MP晶体:中国, 101717762 B[P]. 2010-06-02.
[16] 刘均忠,孙谧,王伟,等. 海洋细菌新型低温碱性蛋白酶mp:中国, 101691565 B[P]. 2010-04-07.
[17] WANG Fang, HAO Jian-hua, YANG Cheng-ye, et al. Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122[J]. Applied Biochemistry and Biotechnology, 2010, 162(5):1 497-1 505.
[18] KWAK J, LEE K, SHIN D H, et al. Biochemical and genetic characterization of arazyme, an extracellular metalloprotease produced from Serratia proteamaculans HY-3.[J]. Journal of Microbiology & Biotechnology, 2007, 17(5):761-768.
[19] KIM H J, TAMANOUE Y, JEOHN G H, et al. Purification and characterization of an extracellular metalloprotease from Pseudomonas fluorescens[J]. The Journal of Biochemistry, 1997, 121(1):82-88.
[20] KIM H S, GOLYSHIN P N, TIMMIS K N. Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK[J]. Journal of industrial microbiology & biotechnology, 2007, 34(11):715-721.
[21] WU Dong-xia, LI Peng-peng, ZHOU Jia-le, et al. Identification of a toxic serralysin family protease with unique thermostable property from S. marcescens FS14[J]. International Journal of Biological Macromolecules, 2016, 93: 98-106.
[22] MAEDA H, MORIHARA K. Serralysin and related bacterial proteinases[J]. Methods in Enzymology, 1995, 248:395-413.
[23] WASSIF C, CHEEK D, BELAS R. Molecular analysis of a metalloprotease from Proteus mirabilis[J]. Journal of Bacteriology, 1995, 177(20):5 790-5 798.
[24] STELLA N A, CALLAGHAN J D, ZHANG Liang, et al. SlpE is a calcium-dependent cytotoxic metalloprotease associated with clinical isolates of Serratia marcescens[J]. Research in Microbiology, 2017, 168(6): 567-574.
[25] 郝俊. 柑橘黄龙病Serralysin蛋白的重组表达和纯化[D]. 武汉:华中农业大学, 2011.
[26] 赵爱平,孙聪,展恩玲,等. 蛋白酶抑制剂对梨小食心虫幼虫中肠蛋白酶活性的影响[J]. 昆虫学报, 2016, 59(10):1 069-1 078.
[27] SANTIAGO R,MICHEL K,LESZEK K,et al. Metzincin proteases and their inhibitors: Foes or friends in nervous system physiology?[J].The Journal of Neuroscience.2010,30(46):15 337-15 357.
[28] ARUMUGAM S, GRAY R D, LANE A N. NMR structure note: Alkaline proteinase inhibitor APRin from Pseudomonas aeruginosa[J]. Journal of Biomolecular NMR, 2008, 40(3):213-217.
[29] ODA K, KAYAMA T, MURAO S. Purification and properties of a proteinaceous metallo-proteinase inhibitor from Streptomyces nigrescens TK-23[J]. BBA-Enzymology, 1979, 571(1):147-156.
[30] LIANG Peng-juan, LI Shang-yong, WANG Kun, et al. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122[J]. Chinese Journal of Oceanology and Limnology, 2017(3):1-7.
[31] KIM K S, KIM T U, KIM I J, et al. Characterization of a metalloprotease inhibitor protein (SmaPI) of Serratia marcescens[J]. Applied and Environmental Microbiology, 1995, 61(8):3 035-3 041.
[32] FELTZER R E, GRAY R D, DEAN W L, et al. Alkaline proteinase inhibitor of Pseudomonas aeruginosa. Interaction of native and N-terminally truncated inhibitor proteins with Pseudomonas metalloproteinases[J]. Journal of Biological Chemistry, 2000, 275(28):21 002-21 009.
[33] KIDA Y, HIGASHIMOTO Y, INOUE H, et al. A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors[J]. Cellular Microbiology, 2008, 10(7):1 491-1 504.
[34] Gomis-Rüth F X. Structural aspects of the metzincin clan of metalloendopeptidases[J]. Molecular Biotechnology, 2003, 24(2):157-202.
[35] CARSON L, CATHCART G R, CERI H, et al. Comparison of the binding specificity of two bacterial metalloproteases, LasB of Pseudomonas aeruginosa and ZapA of Proteus mirabilis, using N-alpha mercaptoamide template-based inhibitor analogues[J]. Biochemical and Biophysical Research Communications, 2012, 422(2): 316-320.
[36] PANDHARE J, ZOG K, DESHPANDE V V. Differential stabilities of alkaline protease inhibitors from actinomycetes: effect of various additives on thermostability[J]. Bioresource Technology, 2002, 84(2):165-169.
[37] OTLEWSKI J, Jelen F, ZAKRZEWSKA M, et al. The many faces of protease–protein inhibitor interaction[J]. The EMBO Journal, 2005, 24(7):1 303-1 310.
[38] FELTZER R E, TRENT J O, GRAY R D. Alkaline proteinase inhibitor of Pseudomonas aeruginosa: a mutational and molecular dynamics study of the role of N-terminal residues in the inhibition of Pseudomonas alkaline proteinase[J]. Journal of Biological Chemistry, 2003, 278(28): 25 952-25 957.
[39] HEGE T, FELTZER R E, GRAY R D, et al. Crystal structure of a complex between Pseudomonas aeruginosa alkaline protease and its cognate inhibitor[J]. Journal of Biological Chemistry, 2001, 276(37):35 087-35 092.
[40] Létoffé S, DELEPELAIRE P, WANDERSMAN C. Cloning and expression in Escherichia coli of the Serratia marcescens metalloprotease gene: secretion of the protease from E. coli in the presence of the Erwinia chrysanthemi protease secretion functions[J]. Journal of Bacteriology, 1991, 173(7):2 160-2 166.
[41] BAE K H, KIM I C, KIM K S, et al. The Leu-3 residue of serratia marcescens metalloprotease inhibitor is important in inhibitory activity and binding with serratia marcescens metalloprotease[J]. Archives of Biochemistry and Biophysics, 1998, 352(1):37-43.
[42] LÉTOFFÉ S, DELEPELAIRE P, WANDERSMAN C. Characterization of a protein inhibitor of extracellular proteases produced by Erwinia chrysanthemi[J]. Molecular Microbiology, 1989, 3(1):79-86.
[43] BAUMANN U, BAUER M, LÉTOFFÉ S, et al. Crystal structure of a complex between Serratia marcescens metallo-protease and an inhibitor from Erwinia chrysanthemi[J]. Journal of Molecular Biology, 1995, 248(3): 653-661.
[44] 王昆,梁朋娟,李尚勇,等. 碱性蛋白酶抑制剂lupI-MSSS原核表达载体的构建及其蛋白表达、纯化[J]. 食品与发酵工业, 2017, 43(7):20-26.
[45] 梁朋娟. 海洋碱性蛋白酶与其抑制剂的相互作用研究//全国第二届海洋与陆地多糖多肽及天然创新药物研发学术会议论文集[C].中国,漠河,2015:3.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 李晨晨, 李梦丽, 张涛. 人乳寡糖的研究进展[J]. 食品与发酵工业, 2021, 47(9): 284-292.
[3] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[4] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[5] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[6] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[7] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[8] 党慧杰, 郑远荣, 刘振民. 超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响[J]. 食品与发酵工业, 2021, 47(6): 56-61.
[9] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[10] 宫璇, 齐筱莹, 赵志康, 逄昕雨, 郭梦雪, 叶张靖, 王友军, 李欣玉, 卢航. 卵磷脂及复合物的功能活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 295-299.
[11] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[12] 杨波, 王珂, 杨光, 吴君波, 江容安. 黄原胶的干热改性及复配增稠应用[J]. 食品与发酵工业, 2021, 47(4): 116-122.
[13] 牟方婷, 袁美, 石黎琳, 曾凡坤, 陈嘉, 张玉. 超声和微波辅助果胶酶处理对果胶结构的影响[J]. 食品与发酵工业, 2021, 47(4): 215-221.
[14] 孙洁, 李燕, 施文正, 汪之和. 虾类生物活性肽的研究进展[J]. 食品与发酵工业, 2021, 47(4): 261-268.
[15] 林诺怡, 成坚, 王琴, 马路凯, 梁嘉熹, 李素芬, 姚文倩, 刘袆帆. 柚皮蛋白的结构表征及细胞免疫活性初步研究[J]. 食品与发酵工业, 2021, 47(3): 59-65.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn