Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (3): 110-117    DOI: 10.13995/j.cnki.11-1802/ts.021568
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
纳米壳聚糖粒子制备工艺优化及抗菌性研究
林洪斌1, 郭训练1,2, 刘茜3, 邢亚阁1*, 许青莲1, 方佳兴1, 车振明1
1 (西华大学 食品与生物工程学院,四川 成都,610039)
2 (商丘学院 风景园林学院,河南 商丘,476000)
3 (西华大学 西华学院,四川 成都,610039)
Preparation process optimization and antibacterial activity analysis of nano-chitosan particles
LIN Hongbin1, GUO Xunlian1,2, LIU Qian3, XING Yage1*, XU Qinglian1, FANG Jiaxing1, CHE Zhenming1
1 (School of Food and Bioengineering, Xihua University, Chengdu 610039, China)
2 (School of Landscape Architecture, Shangqiu University, Shangqiu 476000, China)
3 (School of Xihua, Xihua University, Chengdu 610039, China)
下载:  HTML   PDF (5098KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以壳聚糖和三聚磷酸钠为原材料,采用离子交联法制备壳聚糖纳米粒子。在单因素实验的基础上,采用响应曲面分析法对纳米壳聚糖制备工艺进行优化,并对其抗菌性进行了研究。最佳制备工艺为:壳聚糖质量浓度0.76 mg/mL,三聚磷酸钠质量浓度0.77 mg/mL,壳聚糖与三聚磷酸钠体积比4.11∶1,壳聚糖溶液pH值5.0。纳米壳聚糖的粒径和Zeta电位的理论预测值分别为122.3 nm和+23.43 mV。验证性实验表明,纳米壳聚糖的粒径为119.2 nm,Zeta电位为+22.8 mV,与理论值偏差分别为2.53%、2.69%,纳米粒子分散均匀。当纳米壳聚糖质量浓度达到0.6 mg/mL时,对大肠杆菌和金黄色葡萄球菌表现出明显抑制作用。该制备工艺为高性能纳米壳聚糖粒子的制备及果蔬保鲜方面的应用提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林洪斌
郭训练
刘茜
邢亚阁
许青莲
方佳兴
车振明
关键词:  纳米壳聚糖  离子交联法  响应曲面  三聚磷酸钠  抗菌性    
Abstract: This study aims to obtain the best preparation technology of nano-chitosan particles and study its antimicrobial activity. Nano-chitosan particles were prepared by the ionic crosslinking method using chitosan and sodium tripolyphosphate as raw materials. Based on the single factor experiment, the preparation process of nano-chitosan particles was optimized by response surface analysis, and its antimicrobial activity was studied. The optimum preparation process is as follows: Chitosan concentration was 0.76 mg/mL, sodium triphosphate concentration was 0.77 mg/mL, the volume ratio of chitosan to sodium triphosphate was 4.11∶1, and the pH value of chitosan solution was 5.0. The theoretical predictions of particle size and Zeta potential of nano-chitosan particles were 122.3 nm and +23.43 mV, respectively. Confirmatory experiments showed that the size of nano-chitosan particles was 119.2 nm and the zeta potential was +22.8 mV, and the deviations from the theoretical values were 2.53% and 2.69% respectively, and nano-chitosan particles were distributed uniformly. Nano-chitosan particles concentration 0.6mg/mL could inhibit E. coli and S. aureus significantly. In conclusion, the preparation process is simple without adding organic reagents; the nano-chitosan particles prepared with this method have a small particle size, uniform distribution and remarkable antimicrobial effect. The experimental results provide a theoretical reference for the preparation and application of nano-chitosan particles.
Key words:  nano-chitosan    ion crosslinking    response surface    sodium triphosphate    antibacterial activity
收稿日期:  2019-07-04                出版日期:  2020-02-15      发布日期:  2020-03-13      期的出版日期:  2020-02-15
基金资助: 四川省科技计划项目(2016FZ0019;2018NZ0090和2019NZZJ0028);西华大学省级大学生创新创业训练计划项目(201710623081);干热河谷特色生物资源开发四川省高等学校重点实验室2018年开放基金项目(GE-2018-E-01);成都市技术创新研发项目(2018-YF05-00213-SN)
作者简介:  博士,实验师(邢亚阁教授为通讯作者,E-mail:1804871957@qq.com)。
引用本文:    
林洪斌,郭训练,刘茜,等. 纳米壳聚糖粒子制备工艺优化及抗菌性研究[J]. 食品与发酵工业, 2020, 46(3): 110-117.
LIN Hongbin,GUO Xunlian,LIU Qian,et al. Preparation process optimization and antibacterial activity analysis of nano-chitosan particles[J]. Food and Fermentation Industries, 2020, 46(3): 110-117.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021568  或          http://sf1970.cnif.cn/CN/Y2020/V46/I3/110
[1] 李旭飞,车阳丽,吕艳,等.壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J].材料导报,2018,32(21):3 823-3 830.
[2] 李喜宏,郭训练,李文秀,等.壳聚糖果蔬保鲜复合涂膜的制备与保鲜效果研究进展[J].西华大学学报(自然科学版),2018,37(3):1-10.
[3] 邢亚阁,刘茜,江雨若,等.壳聚糖/纳米TiO2复合涂膜抗菌及物理性能分析[J].西华大学学报(自然科学版),2018,37(2):34-39;63.
[4] 洪英,钟泽辉,郑朝位,等.纳米羧甲基壳聚糖抗菌纸的制备及其力学性能研究[J].包装工程,2015,36(19):50-53.
[5] KLEINE-BRUEGGENEY H, ZORZI G K, FECKER T, et al. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation[J]. Colloids and Surfaces B: Biointerfaces, 2015, 135: 99-108.
[6] LIU G, SHAO L, GE F, et al. Preparation of ultrafine chitosan particles by reverse microemulsion[J]. China Particuology, 2007, 5(6): 384-390.
[7] SABOKTAKIN M R, TABATABAIE R M, MAHARRAMOV A, et al. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon[J]. International Journal of Biological Macromolecules, 2011, 48(3): 381-385.
[8] KATSAROV P D, PILICHEVA B A, MANEV H M, et al. Optimization of chitosan microspheres spray drying via 32 full factorial design[J]. Folia Medica, 2017, 59(3): 310-317.
[9] CHUANG C Y, DON T M, CHIU W Y. Synthesis of chitosan-based thermo-and pH-responsive porous nanoparticles by temperature-dependent self-assembly method and their application in drug release[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(19): 5 126-5 136.
[10] BUGNICOURT L, ALCOUFFE P, LADAVIÈRE C. Elaboration of chitosan nanoparticles: Favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 476-486.
[11] 孟平蕊, 李良波, 陈翠仙, 等. 壳聚糖-三聚磷酸钠聚离子复合膜的研究[J]. 高分子材料科学与工程, 2004, 20(2):188-190;194.
[12] 曾皓月, 王之, 方美娟, 等. pDNA-巯基壳聚糖纳米粒的制备及Box-Behnken效应面法工艺优化[J]. 华侨大学学报 (自然科学版), 2017, 38(5): 676-681.
[13] 魏谭军, 董德刚, 裘梁, 等. 离子交联法制备壳聚糖纳米颗粒[J]. 安徽农业科学, 2012, 40(5): 2 885-2 886; 2 889.
[14] HASHAD R A, ISHAK R A H, FAHMY S, et al. Chitosan-tripolyphosphate nanoparticles: optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks[J]. International Journal of Biological Macromolecules, 2016, 86: 50-58.
[15] FAN W, YAN W, XU Z, et al. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique[J]. Colloids and Surfaces B: Biointerfaces, 2012, 90: 21-27.
[16] DE PINHO NEVES A L, MILIOLI C C, MÜLLER L, et al. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445: 34-39.
[17] MANIKANDAN A, SATHIYABAMA M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea[J]. International Journal of Biological Macromolecules, 2016, 84: 58-61.
[18] CALVO P, REMUNAN-LOPEZ C, VILA-JATO J L, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers[J]. Journal of Applied Polymer Science, 1997, 63(1): 125-132.
[19] NGUYEN T V, NGUYEN T T H, WANG S L, et al. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex[J]. Research on Chemical Intermediates, 2017, 43(6): 3 527-3 537.
[20] 刘步云, 王永丽, 于奇建, 等. 响应面法优化载儿茶素叶酸偶联壳聚糖纳米粒的制备工艺[J]. 食品科学, 2014, 35(14): 46-52.
[21] GUPTA K C, JABRAIL F H. Controlled-release formulations for hydroxy urea and rifampicin using polyphosphate-anion-crosslinked chitosan microspheres[J]. Journal of Applied Polymer Science, 2007, 104(3): 1 942-1 956.
[22] SHU X Z, ZHU K J. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54(2): 235-243.
[23] 范闻. 单分散壳聚糖纳米粒子的制备及其载体应用的研究[D]. 武汉:湖北大学, 2011.
[24] ZHANG L, KOSARAJU S L. Biopolymeric delivery system for controlled release of polyphenolic antioxidants[J]. European Polymer Journal, 2007, 43(7): 2 956-2 966.
[25] 王杰,严玉萍,杨红,等.杂多蓝负载的壳聚糖纳米粒子抗菌性能研究[J].上海师范大学学报(自然科学版),2016,45(6):712-718.
[26] 宋玉民,王婷,马新贤.纳米AgBr/壳聚糖杂化抗菌材料的制备和抑菌性研究[J].化学试剂,2013,35(8):689-692.
[27] 马新贤,张玉梅,宋玉民.纳米氧化鏑/壳聚糖杂化材料的制备和抑菌性研究[J].化学研究与应用,2011,23(2):208-212.
[1] 江飞凤, 谭晓辉, 胡鹏刚, 潘雪梅, 闫锦. 超声-微波协同提取柚子皮多糖工艺优化及单糖组成、结构和抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(2): 196-204.
[2] 黄宸, 谢晶, 薛斌, 邵则淮, 甘建红, 李晓晖, 孙涛. 大豆多糖复合膜及其保鲜应用研究进展[J]. 食品与发酵工业, 2021, 47(10): 251-258.
[3] 孙涛, 刘伟佳, 谢晶, 邵则淮, 甘建红, 李晓晖, 薛斌. 纳米壳聚糖的制备及其在食品保鲜应用中的研究进展[J]. 食品与发酵工业, 2020, 46(8): 293-299.
[4] 李鑫, 涂宗财, 沙小梅, 张露, 李军, 李忠莹. 添加不同来源精油对鱼明胶复合膜抗菌性质及物理性能的影响[J]. 食品与发酵工业, 2020, 46(20): 33-39.
[5] 王桃红, 崔宗岩, 徐立英, 张少博, 姜晓林, 贾光群. 麦卢卡蜂蜜挥发性成分的测定及与抗菌性相关性分析[J]. 食品与发酵工业, 2020, 46(19): 228-236.
[6] 闫浩凯, 张波, 刘琦, 牛见明, 史肖, 韩舜愈. 超高压技术催陈白兰地中酯类物质的工艺优化[J]. 食品与发酵工业, 2020, 46(13): 152-159.
[7] 谢雨婷, 宋明慧, 马毛毛, 陈茏, 杨俊, 文学方, 曽哲灵, 余平. 响应面法提高植物乳酸菌和嗜酸乳杆菌发酵椰奶的活菌数[J]. 食品与发酵工业, 2019, 45(7): 207-212.
[8] 成希飞, 杨沙, 陈果, 赵一萍, 彭娅林, 周游, 徐立. 两种酶水解制备丝素肽的抗菌性及对人胚肾细胞的毒性分析[J]. 食品与发酵工业, 2019, 45(6): 115-121.
[9] 纠敏, 孟媛媛, 王倩, 汪伦记. 冬凌草甲素/壳聚糖复合膜的性能和结构表征[J]. 食品与发酵工业, 2019, 45(24): 119-123.
[10] 朱桂兰, 郭娜, 马文艺, 宁愿, 倪紫惠. 结冷胶-茶多酚复合膜性能的研究[J]. 食品与发酵工业, 2019, 45(14): 72-77.
[11] 王启明, 唐瑜婉, 杨雅轩, 唐宇, 李富华, 赵吉春, 明建. 植物多酚-蛋白质复合抗菌膜研究进展[J]. 食品与发酵工业, 2019, 45(10): 247-252.
[12] 孙杰, 姜杰, 冯彬斌, 孔令民, 汪钊, 魏春. 一株产细菌素乳酸菌的筛选及其细菌素特性研究[J]. 食品与发酵工业, 2018, 44(9): 48-52.
[13] 戚亭, 陈雪忠, 刘志东, 等 . 响应面优化的南极磷虾蛋白磷酸化改性工艺[J]. 食品与发酵工业, 2018, 44(1): 204-.
[14] 杨建明,谢放华,刘嘉慧,郭鑫鹏,黄美娟. 微波作用下合成食品添加剂没食子酸丁酯[J]. 食品与发酵工业, 2017, 43(5): 154-.
[15] 范会平,陈月华,王娜,索标,潘治利,赵天学,艾志录. 紫薯全粉面加工工艺的优化[J]. 食品与发酵工业, 2017, 43(2): 154-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn