Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (2): 108-113    DOI: 10.13995/j.cnki.11-1802/ts.021655
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
溶胶-凝胶包埋法提高丙酮酸氧化酶稳定性
刘冰, 姚兵莉, 张梦君, 杨晔, 周逸纯, 张建国*
(上海理工大学 医疗器械与食品学院,食品科学与工程研究所,上海,200093)
Improving stability of pyruvate oxidase by sol-gel encapsulation
LIU Bing, YAO Bingli, ZHANG Mengjun, YANG Ye, ZHOU Yichun, ZHANG Jianguo*
(Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
下载:  HTML   PDF (958KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该研究采用溶胶-凝胶法包埋丙酮酸氧化酶,首先利用单因素实验确定了溶胶-凝胶法中每个步骤的最优条件,然后利用正交实验得到最优条件为采用5.0 mmol/L二辛基琥珀酸钠条件下振荡10 min,加入0.672 mmol/L四甲氧基硅烷吸附5 h,包埋24 h。结果表明丙酮酸氧化酶的剩余活力比对照组提高了14%,且丙酮酸氧化酶热稳定性在20~30℃时比对照组提高了2~10倍。该结果为多亚基酶的固定化提供了参考,也为丙酮酸氧化酶的应用提供了技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘冰
姚兵莉
张梦君
杨晔
周逸纯
张建国
关键词:  丙酮酸氧化酶  溶胶-凝胶  稳定性  固定化  优化    
Abstract: Pyruvate oxidase, having multi subunits, plays an important role in food and fermentation industry. In recent years, genetic technology help to greatly increase the yield of pyruvate oxidase. However, the stability of pyruvate oxidase needs to be further improved. In this study, pyruvate oxidase was encapsulated by sol-gel technology. Firstly, single factor experiments were carried out to obtain the best value of each factor. Then an orthogonal experiment was used to optimize the conditions for pyruvate oxidase encapsulation by sol-gel technology. In this study, the optimized condition is: shaking in 5.0 mmol/L dioctyl sulfosuccinate sodium solution for 10 min; adding 0.672 mmol/L tetramethoxysilane for 5 h adsorption and then 24 h for encapsulation. The results showed that the final encapsulated pyruvate oxidase residual activity increased by 14% compared with control sample. And two to ten times increased in thermal stability of the encapsulated pyruvate oxidase than control sample at 20-30 ℃. These results provided a reliable methodology for pyruvate oxidase immobilization and application.
Key words:  pyruvate oxidase    sol-gel encapsulation    stability    immobilization    optimization
收稿日期:  2019-07-12                出版日期:  2020-01-25      发布日期:  2020-03-13      期的出版日期:  2020-01-25
作者简介:  硕士研究生(张建国副教授为通讯作者,E-mail:jgzhang@usst.edu.cn)。
引用本文:    
刘冰,姚兵莉,张梦君,等. 溶胶-凝胶包埋法提高丙酮酸氧化酶稳定性[J]. 食品与发酵工业, 2020, 46(2): 108-113.
LIU Bing,YAO Bingli,ZHANG Mengjun,et al. Improving stability of pyruvate oxidase by sol-gel encapsulation[J]. Food and Fermentation Industries, 2020, 46(2): 108-113.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021655  或          http://sf1970.cnif.cn/CN/Y2020/V46/I2/108
[1] IKEBUKURO K, WAKAMURA H, KARUBE I, et al. Phosphate sensing system using pyruvate oxidase and chemiluminescence detection [J]. Biosensors & Bioelectronics, 1996, 11(10): 959-965.
[2] NAKAMURA H, TANAKA H, HASEGAWA M, et al. An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G (from Aerococcus viridans) [J]. Talanta, 1999, 50(4): 799-807.
[3] KEHR S, SCHUBERT F. Pyruvate oxidase based mono- and multienzyme sensors for pyruvate determination and for ADP determination using analyte recycling [C]. The Third World Congress on Biosensors Abstracts, 1994, 164.
[4] MIZUTANI F, YABUKI S, SATO Y, et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly(vinyl alcohol)/polyion complex-bilayer membrane [J]. Electrochimica Acta, 2000, 45(18): 2 945-2 952.
[5] 王丙莲, 马耀宏, 公维丽, 等. 一种快速测定发酵液中丙酮酸含量的简易方法 [J]. 分析试验室, 2018, 37(11): 69-74.
[6] SPELLERBERG B, CUNDELL D R, SANDROS J, et al. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae [J]. Molecular Microbiology, 2010, 19(4): 803-813.
[7] MISAKI H,MATSUURA K,HARADA S. Process for the manufacture of pyruvate oxidase, and analytical method and kit for the use of the same:U.S.Patent 4,246,234[P].1981-1-20.
[8] ZHAO J, WANG Y, CHU J, et al. Statistical optimization of medium for the production of pyruvate oxidase by the recombinant Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(4): 257-262.
[9] 赵劼, 王永红, 储炬, 等. 产丙酮酸氧化酶重组大肠杆菌的发酵过程质粒稳定性研究 [J]. 常熟理工学院学报, 2015, 29(4): 1-7.
[10] LIANG J G, ZHAO J, WANG Z J, et al. Temperature gradient-based high-cell density fed-batch fermentation for the production of pyruvate oxidase by recombinant E.coli[J]. Preparative Biochemistry & Biotechnology, 2018, 48(2): 188-193.
[11] LU J, ZHAO Y, ZHANG J. High-level expression of Aerococcus viridans pyruvate oxidase in Escherichia coli by optimization of vectors and induction conditions [J]. Letters in Applied Microbiology, 2018, 67(3): 262-269.
[12] 姚兵莉, 卢俊文, 张建国. 响应面法优化表达丙酮酸氧化酶重组大肠杆菌培养基 [J]. 工业微生物, 2018, 48(6): 25-31.
[13] ZHANG J, LU J, SU E. Soluble recombinant pyruvate oxidase production in Escherichia coli can be enhanced and inclusion bodies minimized by avoiding pH stress [J]. Journal of Chemical Technology & Biotechnology, 2019, 94: 2 661-2 670.
[14] PIERRE A C. The sol-gel encapsulation of enzymes [J]. Biocatalysis and Biotransformation, 2004, 22(3): 145-170.
[15] WANG G, ZHANG L. A biofriendly sol–gel route to new hybrid gels for enzyme encapsulation [J]. Journal of Sol-Gel Science and Technology, 2014, 72(1): 85-91.
[16] ZAHARESCU M, PREDOANA L, PANDELE J. Relevance of thermal analysis for sol-gel-derived nanomaterials [J]. Journal of Sol-Gel Science and Technology, 2018, 86(1): 7-23.
[17] HONG S G, KIM B C, NA H B, et al. Single enzyme nanoparticles armored by a thin silicate network: Single enzyme caged nanoparticles [J]. Chemical Engineering Journal, 2017, 322: 510-515.
[18] DU Y, GAO J, ZHOU L, et al. Enzyme nanocapsules armored by metal-organic frameworks: A novel approach for preparing nanobiocatalyst [J]. Chemical Engineering Journal, 2017, 327:1 192-1 197.
[19] 卢俊文, 张薷月, 何宣贝, 等. 重组大肠杆菌表达绿色气球菌丙酮酸氧化酶的条件优化 [J]. 工业微生物, 2018, 48(2): 1-6.
[1] 李童, 钱斌, 周建弟, 徐岩, 王栋. 中性脲酶固定化降解黄酒中尿素[J]. 食品与发酵工业, 2021, 47(9): 70-75.
[2] 阮雁春, 彭旭东, 杨丹. 花生蛋白水解物对色拉酱贮藏稳定性的影响[J]. 食品与发酵工业, 2021, 47(8): 96-100.
[3] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[4] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[5] 彭燕鸿, 苏爱秋, 黄伟文, 蓝素桂, 杨天云, 谭强. 微生物嗜热脂肪酶研究进展[J]. 食品与发酵工业, 2021, 47(6): 289-294.
[6] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[7] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[8] 王伟佳, 高晓夏月, 刘爱国, 刘立增, 王鹏程, 杨毅. 不同热处理无乳糖酸奶与普通酸奶品质的比较[J]. 食品与发酵工业, 2021, 47(5): 99-104.
[9] 张红岩, 张妮, 杨梦莹, 刘聪, 杨立芳, 申乃坤, 姜明国. 拟蕈状芽孢杆菌Gxun-30产角蛋白酶液体发酵条件优化[J]. 食品与发酵工业, 2021, 47(4): 136-143.
[10] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[11] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[12] 张敏倩, 刘功良, 费永涛, 白卫东, 艾连中, 俞剑燊. 利用蜂蜜接合酵母合成海藻糖[J]. 食品与发酵工业, 2021, 47(3): 107-113.
[13] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[14] 马亚琴, 贾蒙, 张晨. 高压均质技术在果汁加工中的应用[J]. 食品与发酵工业, 2021, 47(3): 265-273.
[15] 李静竹, 胡梦君, 张建华. 蛋白质谷氨酰胺酶的重组表达与发酵条件优化[J]. 食品与发酵工业, 2021, 47(3): 294-301.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn